979 resultados para SRS mutant
Resumo:
The electron transfer protein rubredoxin from Clostridium pasteurianum contains an Fe(S-Cys)(4) active site. Mutant proteins C9G, C9A, C42G and C42A, in which cysteine ligands are replaced by non-ligating Gly or Ala residues, have been expressed in Escherichia coli. The C42A protein expresses with a (Fe2S2)-S-III cluster in place. In contrast, the other proteins are isolated in colourless forms, although a (Fe2S2)-S-III cluster may be assembled in the C42G protein via incubation with Fe-III and sulfide. The four mutant proteins were isolated as stable mononuclear Hg-II forms which were converted to unstable mononuclear Fe-III preparations that contain both holo and apo protein. The Fe-III systems were characterized by metal analysis and mass spectrometry and by electronic, electron paramagnetic resonance, X-ray absorption and resonance Raman spectroscopies. The dominant Fe-III form in the C9A preparation is a Fe(S-Cys)(3)(OH) centre, similar to that observed previously in the C6S mutant protein. Related centres are present in the proteins NifU and IscU responsible for assembly and repair of iron-sulfur clusters in both prokaryotic and eukaryotic cells. In addition to Fe(S-Cys)(3)(OH) centres, the C9G, C42G and C42A preparations contain a second four-coordinate Fe-III form in which a ligand appears to be supplied by the protein chain. Electronic supplementary material to this paper can be obtained by using the Springer Link server located at http://dx.doi.org/10.1007/s00775-0020355-1.
Resumo:
The gamma-aminobutyric acid type A (GABA(A)) receptor mediates fast inhibitory synaptic transmission in the CNS. Dysfunction of the GABA(A) receptor would be expected to cause neuronal hyperexcitability, a phenomenon linked with epileptogenesis. We have investigated the functional consequences of an arginine-to-glutamine mutation at position 43 within the GABA(A) gamma(2)-subunit found in a family with childhood absence epilepsy and febrile seizures. Rapid-application experiments performed on receptors expressed in HEK-293 cells demonstrated that the mutation slows GABA(A) receptor deactivation and increases the rate of desensitization, resulting in an accumulation of desensitized receptors during repeated, short applications. In Xenopus laevis oocytes, two-electrode voltage-clamp analysis of steady-state currents obtained from alpha(1)beta(2)gamma(2) or alpha(1)beta(2)gamma(2)(R43Q) receptors did not reveal any differences in GABA sensitivity. However, differences in the benzodiazepine pharmacology of mutant receptors were apparent. Mutant receptors expressed in oocytes displayed reduced sensitivity to diazepam and flunitrazepam but not the imiclazopyricline zolpidem. These results provide evidence of impaired GABA(A) receptor function that could decrease the efficacy of transmission at inhibitory synapses, possibly generating a hyperexcitable neuronal state in thalamocortical networks of epileptic patients possessing the mutant subunit.
Resumo:
Several reports have suggested an interaction between the erythropoietin receptor (EpoR) and the shared signaling subunit (hbeta(c)) of the human granulocyte macrophage-colony stimulating factor (GM-CSF), interleukin (IL)-3, and IL-5 receptors, although the functional consequences of this interaction are unclear. We previously showed that in vivo expression of constitutively active extracellular (EC) mutants of hbeta(c) induces erythrocytosis and Epo independence of erythroid colony-forming units (CFU-E). This occurs despite an apparent requirement of these mutants for the GM-CSF receptor alpha-subunit (GMRalpha), which is not expressed in CFU-E. Here, we show that coexpression of hbeta(c) EC mutants and EpoR in BaF-B03 cells, which lack GMRalpha, results in factor-independent proliferation and JAK2 activation. Mutant receptors that cannot activate JAK2 fail to produce a functional interaction. As there is no detectable phosphorylation of hbeta(c). on intracellular tyrosine residues, EpoR displays constitutive tyrosine phosphorylation. These observations suggest that JAK2 activation mediates cross-talk between EC mutants of hbeta(c) and EpoR. The implications of these data are discussed as are our findings that activated hbeta(c) mutants can functionally interact with certain other cytokine receptors.
Resumo:
1. In vivo studies have shown that the low-affinity 75 kDa neurotrophin receptor (p75NTR) is involved in axotomy-induced cell death of sensory and motor neurons. To further examine the importance of p75NTR in mediating neuronal death in vivo , we examined the effect of axotomy in the p75NTR-knockout mouse, which has a disrupted ligand-binding domain. 2. The extent of sensory and motor neuron loss in the p75NTR-knockout mouse following axotomy was not significantly different to that in wild-type mice. This suggests that disruption of the ligand-binding domain is insufficient to block the cell death process in axotomized neurons. 3. Immunohistochemical studies showed that axotomized neurons continue to express this mutant receptor with its intracellular death-signalling moiety intact. 4. Treatment with antisense oligonucleotides targeted against p75NTR resulted in significant reduction in the loss of axotomized neurons in the knockout mouse. 5. These data suggest that the intracellular domain of p75NTR is essential for death-signalling and that p75NTR can signal apoptosis, despite a disrupted ligand-binding domain.
Resumo:
Directed evolution of cytochrome P450 enzymes represents an attractive means of generating novel catalysts for specialized applications. Xenobiotic-metabolizing P450s are particularly well suited to this approach due to their inherent wide substrate specificity. In the present study, a novel method for DNA shuffling was developed using an initial restriction enzyme digestion step, followed by elimination of long parental sequences by size-selective filtration. P450 2C forms were subjected to a single round of shuffling then coexpressed with reductase in E. coli. A sample (54 clones) of the resultant library was assessed for sequence diversity, hemo- and apoprotein expression, and activity towards the substrate indole. All mutants showed a different RFLP pattern compared to all parents, suggesting that the library was free from contamination by parental forms. Haemoprotein expression was detectable in 45/54 (83%) of the mutants sampled. Indigo production was less than or comparable to the activities of one or more of the parental P450s, but three mutants showed indirubin production in excess of that seen with any parental form, representing a gain of function. In conclusion, a method is presented for the effective shuffling of P450 sequences to generate diverse libraries of mutant P450s containing a high proportion of correctly folded hemoprotein, and minimal contamination with parental forms.
Resumo:
Human N-acetyltransferase Type I (NAT1) catalyses the acetylation of many aromatic amine and hydrazine compounds and it has been implicated in the catabolism of folic acid. The enzyme is widely expressed in the body, although there are considerable differences in the level of activity between tissues. A search of the mRNA databases revealed the presence of several NAT1 transcripts in human tissue that appear to be derived from different promoters. Because little is known about NAT1 gene regulation, the present study was undertaken to characterize one of the putative promoter sequences of the NAT1 gene located just upstream of the coding region. We show with reverse-transcriptase PCR that mRNA transcribed from this promoter (Promoter 1) is present in a variety of human cell-lines, but not in quiescent peripheral blood mononuclear cells. Using deletion mutant constructs, we identified a 20 bp sequence located 245 bases upstream of the translation start site which was sufficient for basal NAT1 expression. It comprised an AP-1 (activator protein 1)-binding site, flanked on either side by a TCATT motif. Mutational analysis showed that the AP-1 site and the 3' TCATT sequence were necessary for gene expression, whereas the 5' TCATT appeared to attenuate promoter activity. Electromobility shift assays revealed two specific bands made up by complexes of c-Fos/Fra, c-Jun, YY-1 (Yin and Yang 1) and possibly Oct-1. PMA treatment enhanced expression from the NAT1 promoter via the AP-1-binding site. Furthermore, in peripheral blood mononuclear cells, PMA increased endogenous NAT1 activity and induced mRNA expression from Promoter I, suggesting that it is functional in vivo.
Resumo:
Activation of the granulocyte-macrophage colony-stimulating factor (GM-CSF) family of receptors promotes the survival, proliferation, and differentiation of cells of the myeloid compartment. Several signaling pathways are activated downstream of the receptor, however it is not clear how these induce specific biologic outcomes. We have previously identified 2 classes of constitutively active mutants of the shared signaling subunit, human (h) betac, of the human GM-CSF/interieukin-3 (IL-3)/IL-5 receptors that exhibit different modes of signaling. In a factor-dependent bipotential myeloid cell line, FDB1, an activated mutant containing a substitution in the transmembrane domain (V449E) induces factor-independent proliferation and survival, while mutants in the extracellular domain induce factor-independent granulocyte-macrophage differentiation. Here we have used further mutational analysis to demonstrate that there are nonredundant functions for several regions of the cytoplasmic domain with regard to mediating proliferation, viability, and differentiation, which have not been revealed by previous studies with the wild-type GM-CSF receptor. This unique lack of redundancy has revealed an association of a conserved membrane-proximal region with viability signaling and a critical but distinct role for tyrosine 577 in the activities of each class of mutant.
Resumo:
Many drugs and chemicals found in the environment are either detoxified by N-acetyltransferase 1 (NAT1, EC 2.3.1.5) and eliminated from the body or bioactivated to metabolites that have the potential to cause toxicity and/or cancer. NAT1 activity in the body is regulated by genetic polymorphisms as well as environmental factors such as substrate-dependent down-regulation and oxidative stress. Here we report the molecular mechanism for the low protein expression from mutant NAT1 alleles that gives rise to the slow acetylator phenotype and show that a similar process accounts for enzyme down-regulation by NAT1 substrates. NAT1 allozymes NAT1 14, NAT1 15, NAT1 17, and NAT1 22 are devoid of enzyme activity and have short intracellular half-lives (similar to4 h) compared with wild-type NAT1 4 and the active allozyme NAT1 24. The inactive allozymes are unable to be acetylated by cofactor, resulting in ubiquitination and rapid degradation by the 26 S proteasome. This was confirmed by site-directed mutagenesis of the active site cysteine 68. The NAT1 substrate p-aminobenzoic acid induced ubiquitination of the usually stable NAT1 4, leading to its rapid degradation. From this study, we conclude that NAT1 exists in the cell in either a stable acetylated state or an unstable non-acetylated state and that mutations in the NAT1 gene that prevent protein acetylation produce a slow acetylator phenotype.
Resumo:
An extracellular glucoamylase produced by Paecilomyces variotii was purified using DEAE-cellulose ion exchange chromatography and Sephadex G-100 gel filtration. The purified protein migrated as a single band in 7% PAGE and 8% SDS-PAGE. The estimated molecular mass was 86.5 kDa (SDS-PAGE). Optima of temperature and pH were 55 degrees C and 5.0, respectively. In the absence of substrate the purified glucoamylase was stable for 1 h at 50 and 55 degrees C, with a t(50) of 45 min at 60 degrees C. The substrate contributed to protect the enzyme against thermal denaturation. The enzyme was mainly activated by manganese metal ions. The glucoamylase produced by P. variotii preferentially hydrolyzed amylopectin, glycogen and starch, and to a lesser extent malto-oligossacarides and amylose. Sucrose, p-nitrophenyl alpha-D-maltoside, methyl-alpha-D-glucopyranoside, pullulan, alpha- and beta-cyclodextrin, and trehalose were not hydrolyzed. After 24 h, the products of starch hydrolysis, analyzed by thin layer chromatography, showed only glucose. The circular dichroism spectrum showed a protein rich in alpha-helix. The sequence of amino acids of the purified enzyme VVTDSFR appears similar to glucoamylases purified from Talaromyces emersonii and with the precursor of the glucoamylase from Aspergillus oryzae. These results suggested the character of the enzyme studied as a glucoamylase (1,4-alpha-D-glucan glucohydrolase).
Resumo:
Gangliosides are complex glycosphingolipids that are important in many biological processes. The present study investigated the role of gangliosides in the organization of lipid rafts in RBL-2H3 mast cells and in the modulation of mast cell degranulation via Fc epsilon RI. The role of gangliosides was examined using two ganglioside deficient cell lines (B6A4A2III-E5 and B6A4C1III-D1) as well as the parent cell line (RBL-2H3). All three cell lines examined express Fc epsilon RI, Lyn, Syk and LAT. However, only in RBL-2H3 cells were Fc epsilon RI, LAT and alpha-galactosyl derivatives of ganglioside GD(1b) mobilized to lipid raft domains following Fc epsilon RI stimulation. The inhibition of glycosphingolipid synthesis in RBL-2H3 cells also resulted in a decrease in the release of beta-hexosaminidase activity after Fc epsilon RI activation. The two mutant cell lines have a reduced release of beta-hexosaminidase activity after Fc epsilon RI stimulation, but not after exposure to calcium ionophore. These results indicate that the alpha-galactosyl derivatives of ganglioside GD(1b) are important in the initial events of Fc epsilon RI signaling upstream of Ca(2+) influx. Since the initial signaling events occur in lipid rafts and in the mutant cell lines the rafts are disorganized, these results also suggest that these gangliosides contribute to the correct assembly of lipid rafts and are essential for mast cell activation via Fc epsilon RI. (c) 2008 Published by Elsevier Inc.
Resumo:
Although lacking catalytic activity, the Lys49-PLA(2)s damage artificial membranes by a Ca2+-independent mechanism, and demonstrate a potent bactericidal effect. The relationship between the membrane-damaging activity and bactericidal effect of bothropstoxin-I (BthTx-1), a Lys49-PLA(2) from the venom of Bothrops jararacussu, was evaluated for the wildtype protein and a series of site-directed mutants in the active site and C-terminal regions of the protein. The membrane permeabilization effect against the inner and outer membranes of Escherichia coli K12 was evaluated by fluorescence changes of Sytox Green and N-phenyl-N-naphthylamine, respectively. With the exception of H48Q, all mutants reduced the bactericidal activity, which correlated with a reduction of the permeabilization effect both against the inner bacterial membrane. No significant differences in the permeabilization of the bacterial outer membrane were observed between the native, wild-type recombinant and mutant proteins. These results suggest different permeabilization mechanisms against the inner and outer bacterial membranes. Furthermore, the structural determinants of bacterial inner membrane damage identified in this study correlate with those previously observed for artificial membrane permeabilization, suggesting that a common mechanism of membrane damage underlies the two effects. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Protein engineering is a powerful tool, which correlates protein structure with specific functions, both in applied biotechnology and in basic research. Here, we present a practical teaching course for engineering the green fluorescent protein (GFP) from Aequorea victoria by a random mutagenesis strategy using error-prone polymerase chain reaction. Screening of bacterial colonies transformed with random mutant libraries identified GFP variants with increased fluorescence yields. Mapping the three-dimensional structure of these mutants demonstrated how alterations in structural features such as the environment around the fluorophore and properties of the protein surface can influence functional properties such as the intensity of fluorescence and protein solubility.
Resumo:
A mutant version of the N-terminal domain of Escherichia coli DnaB helicase was used as a model system to assess the stabilization against unfolding gained by covalent cyclization. Cyclization was achieved in vivo by formation of an amide bond between the N and C termini with the help of a split mini-intein. Linear and circular proteins were constructed to be identical in amino acid sequence. Mutagenesis of Phe102 to Glu rendered the protein monomeric even at high concentration. A difference in free energy of unfolding, DeltaDeltaG, between circular and linear protein of 2.3(+/-0.5) kcal mol(-1) was measured at 10degreesC by circular dichroism. A theoretical estimate of the difference in conformational entropy of linear and circular random chains in a three-dimensional cubic lattice model predicted DeltaDeltaG = 2.3 kcal mol(-1), suggesting that stabilization by protein cyclization is driven by the reduced conformational entropy of the unfolded state. Amide-proton exchange rates measured by NMR spectroscopy and mass spectrometry showed a uniform, approximately tenfold decrease of the exchange rates of the most slowly exchanging amide protons, demonstrating that cyclization globally decreases the unfolding rate of the protein. The amide proton exchange was found to follow EX1 kinetics at near-neutral pH, in agreement with an unusually slow refolding I measured by stopped-flow circular dichroism. rate of less than 4 min(-1) The linear and circular proteins differed more in their unfolding than in their folding rates. Global unfolding of the N-terminal domain of E. coli DnaB is thus promoted strongly by spatial separation of the N and C termini, whereas their proximity is much less important for folding. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Bothropstoxin-I (BthTx-I) is a Lys49-PLA(2) from the venom of the snake Bothrops jararacussu, which permeabilizes biological and artificial membranes by a mechanism independent of lipid hydrolysis. This mechanism has been investigated by studying the interaction of nine single tryptophan BthTx-I mutants with negatively charged phospholipid membranes. Changes in the solvent exposure of the tryptophan in each mutant were evaluated comparing the rate of chemical modification (k(mod)) by bromosuccinamide with the maximum intrinsic tryptophan fluorescence emission wavelength (lambda(max)) in buffer and in the presence of 10% DMPA/90% DPPC liposomes. No changes in lambda(max). were observed, whereas k(mod) values for tryptophans at positions 7, 10, 31 and 125 were significantly reduced in the presence of lipids, suggesting that bound phospholipid decreases solvent accessibility at these positions. Since the half-lives of the fluorescence and chemical modification effects differ by at least six orders of magnitude, these results suggest that the bound phospholipid may interact with multiple locations on the protein surface over micro- to millisecond timescales. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The title compound, C(8)H(14)N(2)O(5)S 2(H(2)O), 2-amino-3-(N-oxipiridin-4-ilsulfanil)-propionic acid dihydrate, is obtained by the reaction of cysteine and 4-nitropyridine N-oxide in dimethylformamide, removing the NO(2) group from the benzene ring and releasing nitrous acid into the solution. The molecule exists as a Zwitterion. Hydrogen bond interactions involving the title molecule and water molecules allow the formation of R(5)(5)(23) edge fused rings parallel to (010). Water molecules are connected independently, forming infinite chains (wires), in square wave form, along the b-axis. The chirality of the cysteine molecule used in the synthesis is retained in the title molecule. A density functional theory (DFT) optimized structure at the B3LYP/6-311G(3df,2p) level allows comparison of calculated and experimental IR spectra.