953 resultados para SILLENITE CRYSTALS
Resumo:
The Mont Collon mafic complex is one of the best preserved examples of the Early Permian magmatism in the Central Alps, related to the intra-continental collapse of the Variscan belt. It mostly consists (> 95 vol.%) of ol+hy-nonnative plagioclase-wehrlites, olivine- and cpx-gabbros with cumulitic structures, crosscut by acid dikes. Pegmatitic gabbros, troctolites and anorthosites outcrop locally. A well-preserved cumulative, sequence is exposed in the Dents de Bertol area (center of intrusion). PT-calculations indicate that this layered magma chamber emplaced at mid-crustal levels at about 0.5 GPa and 1100 degrees C. The Mont Collon cumulitic rocks record little magmatic differentiation, as illustrated by the restricted range of clinopyroxene mg-number (Mg#(cpx)=83-89). Whole-rock incompatible trace-element contents (e.g. Nb, Zr, Ba) vary largely and without correlation with major-element composition. These features are characteristic of an in-situ crystallization process with variable amounts of interstitial liquid L trapped between the cumulus mineral phases. LA-ICPMS measurements show that trace-element distribution in the latter is homogeneous, pointing to subsolidus re-equilibration between crystals and interstitial melts. A quantitative modeling based on Langmuir's in-situ crystallization equation successfully duplicated the REE concentrations in cumulitic minerals of all rock facies of the intrusion. The calculated amounts of interstitial liquid L vary between 0 and 35% for degrees of differentiation F of 0 to 20%, relative to the least evolved facies of the intrusion. L values are well correlated with the modal proportions of interstitial amphibole and whole-rock incompatible trace-element concentrations (e.g. Zr, Nb) of the tested samples. However, the in-situ crystallization model reaches its limitations with rock containing high modal content of REE-bearing minerals (i.e. zircon), such as pegmatitic gabbros. Dikes of anorthositic composition, locally crosscutting the layered lithologies, evidence that the Mont Collon rocks evolved in open system with mixing of intercumulus liquids of different origins and possibly contrasting compositions. The proposed model is not able to resolve these complex open systems, but migrating liquids could be partly responsible for the observed dispersion of points in some correlation diagrams. Absence of significant differentiation with recurrent lithologies in the cumulitic pile of Dents de Bertol points to an efficiently convective magma chamber, with possible periodic replenishment, (c) 2005 Elsevier B.V. All rights reserved.
Uric acid is a danger signal activating NALP3 inflammasome in lung injury inflammation and fibrosis.
Resumo:
RATIONALE: Lung injury leads to pulmonary inflammation and fibrosis through myeloid differentiation primary response gene 88 (MyD88) and the IL-1 receptor 1 (IL-1R1) signaling pathway. The molecular mechanisms by which lung injury triggers IL-1beta production, inflammation, and fibrosis remain poorly understood. OBJECTIVES: To determine if lung injury depends on the NALP3 inflammasome and if bleomycin (BLM)-induced lung injury triggers local production of uric acid, thereby activating the NALP3 inflammasome in the lung. Methods: Inflammation upon BLM administration was evaluated in vivo in inflammasome-deficient mice. Pulmonary uric acid accumulation, inflammation, and fibrosis were analyzed in mice treated with the inhibitor of uric acid synthesis or with uricase, which degrades uric acid. MEASUREMENTS AND MAIN RESULTS: Lung injury depends on the NALP3 inflammasome, which is triggered by uric acid locally produced in the lung upon BLM-induced DNA damage and degradation. Reduction of uric acid levels using the inhibitor of uric acid synthesis allopurinol or uricase leads to a decrease in BLM-induced IL-1beta production, lung inflammation, repair, and fibrosis. Local administration of exogenous uric acid crystals recapitulates lung inflammation and repair, which depend on the NALP3 inflammasome, MyD88, and IL-1R1 pathways and Toll-like receptor (TLR)2 and TLR4 for optimal inflammation but are independent of the IL-18 receptor. CONCLUSIONS: Uric acid released from injured cells constitutes a major endogenous danger signal that activates the NALP3 inflammasome, leading to IL-1beta production. Reducing uric acid tissue levels represents a novel therapeutic approach to control IL-1beta production and chronic inflammatory lung pathology.
Resumo:
An acute attack of gout is a paradigm of acute sterile inflammation, as opposed to pyogenic inflammation. Recent studies suggest that the triggering of IL-1beta release from leucocytes lies at the heart of a cascade of processes that involves multiple cytokines and mediators. The NLRP3 inflammasome appears to have a specific role in this regard, but the biochemical events leading to its activation are still not well understood. We review the known mechanisms that underlie the inflammatory process triggered by urate crystals and suggest areas that require further research.
Resumo:
Most research in gout has concentrated on the proinflammatory mechanisms to explain the inflammation that is generated when leucocytes are in contact with monosodium urate crystals. However, the episodic nature of gout and the absence of inflammation even when crystals are present suggest that there are natural counter-regulatory mechanisms to limit the inflammatory response. Gagné and colleagues showed that myeloid inhibitory C-type lectin, a C-type lectin inhibitory receptor expressed on neutrophils, modulates monosodium urate-induced neutrophil responses in vitro.
Resumo:
The geodynamic forces acting in the Earth's interior manifest themselves in a variety of ways. Volcanoes are amongst the most impressive examples in this respect, but like with an iceberg, they only represent the tip of a more extensive system hidden underground. This system consists of a source region where melt forms and accumulates, feeder connections in which magma is transported towards the surface, and different reservoirs where it is stored before it eventually erupts to form a volcano. A magma represents a mixture of melt and crystals. The latter can be extracted from the source region, or form anywhere along the path towards their final crystallization place. They will retain information of the overall plumbing system. The host rocks of an intrusion, in contrast, provide information at the emplacement level. They record the effects of thermal and mechanical forces imposed by the magma. For a better understanding of the system, both parts - magmatic and metamorphic petrology - have to be integrated. I will demonstrate in my thesis that information from both is complementary. It is an iterative process, using constraints from one field to better constrain the other. Reading the history of the host rocks is not always straightforward. This is shown in chapter two, where a model for the formation of clustered garnets observed in the contact aureole is proposed. Fragments of garnets, older than the intrusive rocks are overgrown by garnet crystallizing due to the reheating during emplacement of the adjacent pluton. The formation of the clusters is therefore not a single event as generally assumed but the result of a two-stage process, namely the alteration of the old grains and the overgrowth and amalgamation of new garnet rims. This makes an important difference when applying petrological methods such as thermobarometry, geochronology or grain size distributions. The thermal conditions in the aureole are a strong function of the emplacement style of the pluton. therefore it is necessary to understand the pluton before drawing conclusions about its aureole. A study investigating the intrusive rocks by means of field, geochemical, geochronologi- cal and structural methods is presented in chapter three. This provided important information about the assembly of the intrusion, but also new insights on the nature of large, homogeneous plutons and the structure of the plumbing system in general. The incremental nature of the emplacement of the Western Adamello tonalité is documented, and the existence of an intermediate reservoir beneath homogeneous plutons is proposed. In chapter four it is demonstrated that information extracted from the host rock provides further constraints on the emplacement process of the intrusion. The temperatures obtain by combining field observations with phase petrology modeling are used together with thermal models to constrain the magmatic activity in the immediate intrusion. Instead of using the thermal models to control the petrology result, the inverse is done. The model parameters were changed until a match with the aureole temperatures was obtained. It is shown, that only a few combinations give a positive match and that temperature estimates from the aureole can constrain the frequency of ancient magmatic systems. In the fifth chapter, the Anisotropy of Magnetic Susceptibility of intrusive rocks is compared to 3D tomography. The obtained signal is a function of the shape and distribution of ferromagnetic grains, and is often used to infer flow directions of magma. It turns out that the signal is dominated by the shape of the magnetic crystals, and where they form tight clusters, also by their distribution. This is in good agreement with the predictions made in the theoretical and experimental literature. In the sixth chapter arguments for partial melting of host rock carbonates are presented. While at first very surprising, this is to be expected when considering the prior results from the intrusive study and experiments from the literature. Partial melting is documented by compelling microstructures, geochemical and structural data. The necessary conditions are far from extreme and this process might be more frequent than previously thought. The carbonate melt is highly mobile and can move along grain boundaries, infiltrating other rocks and ultimately alter the existing mineral assemblage. Finally, a mineralogical curiosity is presented in chapter seven. The mineral assemblage magne§site and calcite is in apparent equilibrium. It is well known that these two carbonates are not stable together in the system Ca0-Mg0-Fe0-C02. Indeed, magnesite and calcite should react to dolomite during metamorphism. The presented explanation for this '"forbidden" assemblage is, that a calcite melt infiltrated the magnesite bearing rock along grain boundaries and caused the peculiar microstructure. This is supported by isotopie disequilibrium between calcite and magnesite. A further implication of partially molten carbonates is, that the host rock drastically looses its strength so that its physical properties may be comparable to the ones of the intrusive rocks. This contrasting behavior of the host rock may ease the emplacement of the intrusion. We see that the circle closes and the iterative process of better constraining the emplacement could start again. - La Terre est en perpétuel mouvement et les forces tectoniques associées à ces mouvements se manifestent sous différentes formes. Les volcans en sont l'un des exemples les plus impressionnants, mais comme les icebergs, les laves émises en surfaces ne représentent que la pointe d'un vaste système caché dans les profondeurs. Ce système est constitué d'une région source, région où la roche source fond et produit le magma ; ce magma peut s'accumuler dans cette région source ou être transporté à travers différents conduits dans des réservoirs où le magma est stocké. Ce magma peut cristalliser in situ et produire des roches plutoniques ou alors être émis en surface. Un magma représente un mélange entre un liquide et des cristaux. Ces cristaux peuvent être extraits de la source ou se former tout au long du chemin jusqu'à l'endroit final de cristallisation. L'étude de ces cristaux peut ainsi donner des informations sur l'ensemble du système magmatique. Au contraire, les roches encaissantes fournissent des informations sur le niveau d'emplacement de l'intrusion. En effet ces roches enregistrent les effets thermiques et mécaniques imposés par le magma. Pour une meilleure compréhension du système, les deux parties, magmatique et métamorphique, doivent être intégrées. Cette thèse a pour but de montrer que les informations issues de l'étude des roches magmatiques et des roches encaissantes sont complémentaires. C'est un processus itératif qui utilise les contraintes d'un domaine pour améliorer la compréhension de l'autre. Comprendre l'histoire des roches encaissantes n'est pas toujours aisé. Ceci est démontré dans le chapitre deux, où un modèle de formation des grenats observés sous forme d'agrégats dans l'auréole de contact est proposé. Des fragments de grenats plus vieux que les roches intru- sives montrent une zone de surcroissance générée par l'apport thermique produit par la mise en place du pluton adjacent. La formation des agrégats de grenats n'est donc pas le résultat d'un seul événement, comme on le décrit habituellement, mais d'un processus en deux phases, soit l'altération de vieux grains engendrant une fracturation de ces grenats, puis la formation de zone de surcroissance autour de ces différents fragments expliquant la texture en agrégats observée. Cette interprétation en deux phases est importante, car elle engendre des différences notables lorsque l'on applique des méthodes pétrologiques comme la thermobarométrie, la géochronologie ou encore lorsque l'on étudie la distribution relative de la taille des grains. Les conditions thermales dans l'auréole de contact dépendent fortement du mode d'emplacement de l'intrusion et c'est pourquoi il est nécessaire de d'abord comprendre le pluton avant de faire des conclusions sur son auréole de contact. Une étude de terrain des roches intrusives ainsi qu'une étude géochimique, géochronologique et structurale est présente dans le troisième chapitre. Cette étude apporte des informations importantes sur la formation de l'intrusion mais également de nouvelles connaissances sur la nature de grands plutons homogènes et la structure de système magmatique en général. L'emplacement incrémental est mis en évidence et l'existence d'un réservoir intermédiaire en-dessous des plutons homogènes est proposé. Le quatrième chapitre de cette thèse illustre comment utiliser l'information extraite des roches encaissantes pour expliquer la mise en place de l'intrusion. Les températures obtenues par la combinaison des observations de terrain et l'assemblage métamorphique sont utilisées avec des modèles thermiques pour contraindre l'activité magmatique au contact directe de cette auréole. Au lieu d'utiliser le modèle thermique pour vérifier le résultat pétrologique, une approche inverse a été choisie. Les paramètres du modèle ont été changés jusqu'à ce qu'on obtienne une correspondance avec les températures observées dans l'auréole de contact. Ceci montre qu'il y a peu de combinaison qui peuvent expliquer les températures et qu'on peut contraindre la fréquence de l'activité magmatique d'un ancien système magmatique de cette manière. Dans le cinquième chapitre, les processus contrôlant l'anisotropie de la susceptibilité magnétique des roches intrusives sont expliqués à l'aide d'images de la distribution des minéraux dans les roches obtenues par tomographie 3D. Le signal associé à l'anisotropie de la susceptibilité magnétique est une fonction de la forme et de la distribution des grains ferromagnétiques. Ce signal est fréquemment utilisé pour déterminer la direction de mouvement d'un magma. En accord avec d'autres études de la littérature, les résultats montrent que le signal est dominé par la forme des cristaux magnétiques, ainsi que par la distribution des agglomérats de ces minéraux dans la roche. Dans le sixième chapitre, une étude associée à la fusion partielle de carbonates dans les roches encaissantes est présentée. Si la présence de liquides carbonatés dans les auréoles de contact a été proposée sur la base d'expériences de laboratoire, notre étude démontre clairement leur existence dans la nature. La fusion partielle est documentée par des microstructures caractéristiques pour la présence de liquides ainsi que par des données géochimiques et structurales. Les conditions nécessaires sont loin d'être extrêmes et ce processus pourrait être plus fréquent qu'attendu. Les liquides carbonatés sont très mobiles et peuvent circuler le long des limites de grain avant d'infiltrer d'autres roches en produisant une modification de leurs assemblages minéralogiques. Finalement, une curiosité minéralogique est présentée dans le chapitre sept. L'assemblage de minéraux de magnésite et de calcite en équilibre apparent est observé. Il est bien connu que ces deux carbonates ne sont pas stables ensemble dans le système CaO-MgO-FeO-CO.,. En effet, la magnésite et la calcite devraient réagir et produire de la dolomite pendant le métamorphisme. L'explication présentée pour cet assemblage à priori « interdit » est que un liquide carbonaté provenant des roches adjacentes infiltre cette roche et est responsable pour cette microstructure. Une autre implication associée à la présence de carbonates fondus est que la roche encaissante montre une diminution drastique de sa résistance et que les propriétés physiques de cette roche deviennent comparables à celles de la roche intrusive. Cette modification des propriétés rhéologiques des roches encaissantes peut faciliter la mise en place des roches intrusives. Ces différentes études démontrent bien le processus itératif utilisé et l'intérêt d'étudier aussi bien les roches intrusives que les roches encaissantes pour la compréhension des mécanismes de mise en place des magmas au sein de la croûte terrestre.
Resumo:
Gout is the most common form of inflammatory arthritis in the elderly. In the last two decades, both hyperuricemia and gout have increased markedly and similar trends in the epidemiology of the metabolic syndrome have been observed. Recent studies provide new insights into the transporters that handle uric acid in the kidney as well as possible links between these transporters, hyperuricemia, and hypertension. The treatment of established hyperuricemia has also seen new developments. Febuxostat and PEG-uricase are two novel treatments that have been evaluated and shown to be highly effective in the management of hyperuricemia, thus enlarging the therapeutic options available to lower uric acid levels. Monosodium urate (MSU) crystals are potent inducers of inflammation. Within the joint, they trigger a local inflammatory reaction, neutrophil recruitment, and the production of pro-inflammatory cytokines as well as other inflammatory mediators. Experimentally, the uptake of MSU crystals by monocytes involves interactions with components of the innate immune system, namely Toll-like receptor (TLR)-2, TLR-4, and CD14. Intracellularly, MSU crystals activate multiple processes that lead to the formation of the NALP-3 (NACHT, LRR, and pyrin domain-containing-3) inflammasome complex that in turn processes pro-interleukin (IL)-1 to yield mature IL-1 beta, which is then secreted. The inflammatory effects of MSU are IL-1-dependent and can be blocked by IL-1 inhibitors. These advances in the understanding of hyperuricemia and gout provide new therapeutic targets for the future.
Resumo:
Rosickyite, the natural monoclinic gamma -form of sulphur, exists in only a few localities around the globe. In the old asphalt mine at La Presta, Neuchatel. Switzerland, rosickyite occurs locally as small, but very well formed crystals suitable for crystallographic studies. It grows as an alteration product of pyrite-rich asphalt. Rosickyite from La Presta mine is pure molecular sulphur, as revealed by gas chromatography-mass spectrometry. The X-ray powder diffraction data of La Presta rosickyite does not match the one previously published for this species. Therefore, a single crystal study was undertaken and a new indexed X-ray powder diffraction diagram for natural rosickyite is proposed.
Resumo:
An African oxalogenic tree, the iroko tree (Milicia excelsa), has the property to enhance carbonate precipitation in tropical oxisols, where such accumulations are not expected due to the acidic conditions in these types of soils. This uncommon process is linked to the oxalate-carbonate pathway, which increases soil pH through oxalate oxidation. In order to investigate the oxalate-carbonate pathway in the iroko system, fluxes of matter have been identified, described, and evaluated from field to microscopic scales. In the first centimeters of the soil profile, decaying of the organic matter allows the release of whewellite crystals, mainly due to the action of termites and saprophytic fungi. In addition, a concomitant flux of carbonate formed in wood tissues contributes to the carbonate flux and is identified as a direct consequence of wood feeding by termites. Nevertheless, calcite biomineralization of the tree is not a consequence of in situ oxalate consumption, but rather related to the oxalate oxidation inside the upper part of the soil. The consequence of this oxidation is the presence of carbonate ions in the soil solution pumped through the roots, leading to preferential mineralization of the roots and the trunk base. An ideal scenario for the iroko biomineralization and soil carbonate accumulation starts with oxalatization: as the iroko tree grows, the organic matter flux to the soil constitutes the litter, and an oxalate pool is formed on the forest ground. Then, wood rotting agents (mainly termites, saprophytic fungi, and bacteria) release significant amounts of oxalate crystals from decaying plant tissues. In addition, some of these agents are themselves producers of oxalate (e.g. fungi). Both processes contribute to a soil pool of "available" oxalate crystals. Oxalate consumption by oxalotrophic bacteria can then start. Carbonate and calcium ions present in the soil solution represent the end products of the oxalate-carbonate pathway. The solution is pumped through the roots, leading to carbonate precipitation. The main pools of carbon are clearly identified as the organic matter (the tree and its organic products), the oxalate crystals, and the various carbonate features. A functional model based on field observations and diagenetic investigations with δ13C signatures of the various compartments involved in the local carbon cycle is proposed. It suggests that the iroko ecosystem can act as a long-term carbon sink, as long as the calcium source is related to non-carbonate rocks. Consequently, this carbon sink, driven by the oxalate carbonate pathway around an iroko tree, constitutes a true carbon trapping ecosystem as defined by ecological theory.
Resumo:
Characterization of the insecticidal and hemolytic activity of solubilized crystal proteins of Bacillus thuringiensis (Bt) subsp. medellin (Btmed) was performed and compared to solubilized crystal proteins of isolates 1884 of B. thuringiensis subsp. israelensis (Bti) and isolate PG-14 of B. thuringiensis subsp. morrisoni (Btm). In general, at acid pH values solubilization of the Bt crystalline parasporal inclusions (CPI) was lower than at alkaline pH. The larvicidal activity demonstrated by the CPI of Btmed indicated that optimal solubilization of CPI takes place at a pH value of 11.3, in Bti at pH values from 5.03 to 11.3 and in Btm at pH values from 9.05 to 11.3. Hemolytic activity against sheep red blood cells was mainly found following extraction at pH 11.3 in all Bt strains tested. Polyacrylamide gel electrophoresis under denaturing conditions revealed that optimal solubilization of the CPI in all Bt strains takes place at the alkaline pH values from 9.05 to 11.3. An enriched preparation of Btmed crystals was obtained, solubilized and crystal proteins were separated on a size exclusion column (Sephacryl S-200). Three main protein peaks were observed on the chromatogram. The first peak had two main proteins that migrate between 90 to 100 kDa. These proteins are apparently not common to other Bt strains isolated to date. The second and third peaks obtained from the size exclusion column yielded polypeptides of 68 and 28-30 kDa, respectively. Each peak independently, showed toxicity against 1st instar Culex quinquefasciatus larvae. Interestingly, combinations of the fractions corresponding to the 68 and 30 kDa protein showed an increased toxicity. These results suggest that the 94 kDa protein is an important component of the Btmed toxins with the highest potency to kill mosquito larvae. When crystal proteins of Bti were probed with antisera raised independently against the three main protein fractions of Btmed, the only crystal protein that showed cross reaction was the 28 kDa protein. These data suggest that Btmed could be an alternative bacterium for mosquito control programs in case mosquito larval resistance emerges to Bti toxic proteins.
Resumo:
Twenty-six species of white-rotting Agaricomycotina fungi (Basidiomycota) were screened for their ability to produce calcium-oxalate (CaOx) crystals in vitro. Most were able to produce CaOx crystals in malt agar medium in the absence of additional calcium. In the same medium enriched with Ca2+, all the species produced CaOx crystals (weddellite or whewellite). Hyphae of four species (Ganoderma lucidum, Polyporus ciliatus, Pycnoporus cinnabarinus, and Trametes versicolor) were found coated with crystals (weddellite/whewellite). The production of CaOx crystals during the growth phase was confirmed by an investigation of the production kinetics for six of the species considered in the initial screening (Pleurotus citrinopileatus, Pleurotus eryngii, Pleurotus ostreatus, P. cinnabarinus, Trametes suaveolens, and T. versicolor). However, the crystals produced during the growth phase disappeared from the medium over time in four of the six species (P. citrinopileatus, P. eryngii, P. cinnabarinus, and T. suaveolens). For P. cinnabarinus, the disappearance of the crystals was correlated with a decrease in the total oxalate concentration measured in the medium from 0.65 μg mm−2 (at the maximum accumulation rate) to 0.30 μg mm−2. The decrease in the CaOx concentration was correlated with a change in mycelia morphology. The oxalate dissolution capability of all the species was also tested in a medium containing calcium oxalate as the sole source of carbon (modified Schlegel medium). Three species (Agaricus blazei, Pleurotus tuberregium, and P. ciliatus) presented a dissolution halo around the growth zone. This study shows that CaOx crystal production is a widespread phenomenon in white-rot fungi, and that an excess of Ca2+ can enhance CaOx crystal production. In addition, it shows that some white-rot fungal species are capable of dissolving CaOx crystals after growth has ceased. These results highlight a diversity of responses around the production or dissolution of calcium oxalate in white-rot fungi and reveal an unexpected potential importance of fungi on the oxalate cycle in the environment.
Resumo:
Bacillus thuringiensis (Bt) subsp. medellin (Btmed) produces parasporal crystalline inclusions which are toxic to mosquito larvae. It has been shown that the inclusions of this bacterium contain mainly proteins of 94, 68 and 28-30 kDa. EcoRI partially digested total DNA of Btmed was cloned by using the Lambda Zap II cloning kit. Recombinant plaques were screened with a mouse policlonal antibody raised against the 94 kDa crystal protein of Btmed. One of the positive plaques was selected, and by in vivo excision, a recombinant pBluescript SK(-) was obtained. The gene encoding the 94 kDa toxin of Btmed DNA was cloned in a 4.4 kb DNA fragment. Btmed DNA was then subcloned as a EcoRI/EcoRI fragment into the shuttle vector pBU4 producing the recombinant plasmid pBTM3 and used to transform by electroporation Bt subsp. israelensis (Bti) crystal negative strain 4Q2-81. Toxicity to mosquito larvae was estimated by using first instar laboratory reared Aedes aegypti, and Culex quinquefasciatus larvae challenged with whole crystals. Toxicity results indicate that the purified inclusions from the recombinant Bti strain were toxic to all mosquito species tested, although the toxicity was not as high as the one produced by the crystal of the Btmed wild type strain. Poliacrylamide gel electrophoresis indicate that the inclusions produced by the recombinant strain Bti (pBTM3) were mainly composed of the 94 kDa protein of Btmed, as it was determined by Western blot
Resumo:
Several quartz crystals from three different Alpine vein localities and of known petrologic setting and evolution have been examined for possible elemental sector zoning in order to help to constrain the mechanisms of such trace element incorporation. Using different in situ techniques (EMPA, LA-ICPMS, SIMS, FTIR-spectroscopy), it was established that Al and Li concentrations can exceed several hundreds of ppma for distinct growth zones within crystals formed at temperatures of about 300 degrees C or less and that also display patterns of cyclic growth when examined with cathodoluminescence. In contrast, crystals formed at temperatures closer to 400 degrees C and without visible cyclic growth have low concentrations of Al and Li as well as other trace elements. Al and Li contents are correlated along profiles measured within the crystals and in general their proportion does not change along the profiles. No relationships were found between Al, Na, and K, and germanium has a qualitative relationship with Al. FTIR spectra also show OH(-) absorption bands within the quartz, with higher amplitudes in zones rich in Al and Li. Sector zoning is present. It is most pronounced between prismatic and rhombohedral faces of the same growth zone, but also between the rhombohedral faces of r and z, which contain different amounts of trace elements. The sector zoning is also expressed by changes in the Li/Al ratio, with higher ratios in 17 compared to r faces. It is concluded that the incorporation of trace elements into hydrothermal quartz from Alpine veins is influenced by growth mechanisms and surface-structures of the growing quartz crystals, the influence of which may change as a function of temperature, pH, as well as the chemical composition of the fluid.
Resumo:
Quartz veins ranging in size from less than 50 cm length and 5 cm width to greater than 10 m in length and 5 m in width are found throughout the Central Swiss Alps. In some cases, the veins are completely filled with milky quartz, while in others, sometimes spectacular void-filling quartz crystals are found. The style of vein filling and size is controlled by host rock composition and deformation history. Temperatures of vein formation, estimated using stable isotope thermometry and mineral equilibria, cover a range of 450 degrees C down to 150 degrees C. Vein formation started at 18 to 20 Ma and continued for over 10 My. The oxygen isotope values of quartz veins range from 10 to 20 permil, and in almost all cases are equal to those of the hosting lithology. The strongly rock-buffered veins imply a low fluid/rock ratio and minimal fluid flow. In order to explain massive, nearly morromineralic quartz formation without exceptionally large fluid fluxes, a mechanism of differential pressure and silica diffusion, combined with pressure solution, is proposed for early vein formation. Fluid inclusions and hydrous minerals in late-formed veins have extremely low delta D values, consistent with meteoric water infiltration. The change from rock-buffered, static fluid to infiltration from above can be explained in terms of changes in the large-scale deformation style occurring between 20 and 15 Ma. The rapid cooling of the Central Alps identified in previous studies may be explained in part, by infiltration of cold meteoric waters along fracture systems down to depths of 10 km or more. An average water flux of 0.15 cm 3 cm(-2)yr(-1) entering the rock and reemerging heated by 40 degrees C is sufficient to cool rock at 10 km depth by 100 degrees C in 5 million years. The very negative delta D values of < -130 permil for the late stage fluids are well below the annual average values measured in meteoric water in the region today. The low fossil delta D values indicate that the Central Alps were at a higher elevation in the Neogene. Such a conclusion is supported by an earlier work, where a paleoaltitude of 5000 meters was proposed on the basis of large erratic boulders found at low elevations far from their origin.
Resumo:
A new hypothesis is formulated to explain the development of rapakivi texture in and around the mafic enclaves of porphyritic granitoids, i.e. in environments involving magma mixing and mingling. The formation of a plagioclase mantle around alkali feldspar megacrysts is attributed to the localized presence of a melt resulting from the reaction of these megacrysts, with host hybrid magma with which they are in disequilibrium. This feldspathic melt adheres to the resorbed crystals and is virtually immiscible with the surrounding magma. Its composition is modified in terms of the relative proportions of K2O, Na2O, and CaO through selective diffusion of these elements, thus allowing the specific crystallization of andesine. With decreasing temperature, the K-feldspar, again stable, crystallizes along with the plagioclase, leading to mixed mantle structures.
Resumo:
Elevated plasma urate levels are associated with metabolic, cardiovascular, and renal diseases. Urate may also form crystals, which can be deposited in joints causing gout and in kidney tubules inducing nephrolithiasis. In mice, plasma urate levels are controlled by hepatic breakdown, as well as, by incompletely understood renal processes of reabsorption and secretion. Here, we investigated the role of the recently identified urate transporter, Glut9, in the physiological control of urate homeostasis using mice with systemic or liver-specific inactivation of the Glut9 gene. We show that Glut9 is expressed in the basolateral membrane of hepatocytes and in both apical and basolateral membranes of the distal nephron. Mice with systemic knockout of Glut9 display moderate hyperuricemia, massive hyperuricosuria, and an early-onset nephropathy, characterized by obstructive lithiasis, tubulointerstitial inflammation, and progressive inflammatory fibrosis of the cortex, as well as, mild renal insufficiency. In contrast, liver-specific inactivation of the Glut9 gene in adult mice leads to severe hyperuricemia and hyperuricosuria, in the absence of urate nephropathy or any structural abnormality of the kidney. Together, our data show that Glut9 plays a major role in urate homeostasis by its dual role in urate handling in the kidney and uptake in the liver.