914 resultados para SCALAR PARTICLES
Resumo:
A facile magnetic control system was designed in bioelectrocatalytic process based on functionalized iron oxide particles. The iron oxide particles were modified with glucose oxidase, and ferrocene dicarboxylic acid was used as electron transfer mediator. Functionalized iron oxide particles can assemble along the direction of applied magnetic field, and the directional dependence of the assembled iron oxide particles can be utilized for device purposes. We report here how such functionalized magnetic particles are used to modulate the bioelectrocatalytic signal by changing the orientation of the applied magnetic field. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The core-shell structured YNbO4:Eu3+/Tb3+@SiO2 particles were realized by coating the YNbO4:Etr(3+)/Tb3+ phosphors onto the surface of spherical silica via a sol-gel process. The obtained materials were characterized by means of X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform IR spectroscopy (FT-IR), photoluminescence (PL) spectra, and cathodoluminescence (CL) spectra.
Resumo:
Nanostructured CaWO4, CaWO4:Eu3+, and CaWO4:Tb3+ phosphor particles were synthesized via a facile sonochemical route. X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, photoluminescence, low voltage cathodoluminescence spectra, and photoluminescence lifetimes were used to characterize the as-obtained samples. The X-ray diffraction results indicate that the samples are well crystallized with the scheelite structure of CaWO4.
Resumo:
CeF3:Tb3+ nanoparticles were successfully prepared by a polyol process using diethylene glycol ( DEG) as solvent. After being coated with dense silica, these CeF3:Tb3+ nanoparticles can be coated with mesoporous silica using nonionic triblock copolymer EO20PO70EO20 ( P 123) as structure-directing agent. The composite can load ibuprofen and release the drug in the PBS. The composite was characterized by X-ray diffraction ( XRD), transmission electron microscopy ( TEM), nitrogen absorption/desorption isotherms, fluorescence spectra, and UV/Vis absorption spectra, respectively.
Resumo:
Nanostructured PbS with different morphologies and particle sizes have been prepared through a polyol process. Narrow size distribution for star-shaped, octahedral, tetradecanehedral, and cubic products were achieved by slowly introducing the source materials using a peristaltic pump in the presence of poly(vinylpyrrolidone) (PVP) as additive. Systematic variation of the kinetic factors, including the additive, the reaction temperature, the duration time, the ratio of source materials, the Sulfur sources, and the Pb(Ac)(2)center dot 3H(2)O concentration, reveals that the morphology depends mainly on the supersaturation degree of the free sulfur ions released from thiourea under elevated temperature.
Resumo:
Ultrafine full-vulcanized polybutadiene rubber (UFBR) in particle sizes of ca. 50-100 nm has been used for modifying mechanical and processing performances of polypropylene (PP), and PP-g-maleic anhydride (PP-MA) has been used as a compatibilizer for enhancing the interfacial adhesion between the two components. The results show that PP/UFBR possesses rheological behaviors such as highly branched PP when UFBR content in blends reaches 10 wt%, while in contrast, the much low content of UFBR combining small amount of PP-MA endows the material with rheological characteristics of high melt strength materials like highly branched PP.
Resumo:
Spherical SiO2 particles have been coated with rare earth oxide layers by a Pechini sol-gel process, leading to the formation of core-shell structured SiO2@RE2O3 (RE = rare earth elements) and SiO2@Gd2O3:Ln(3+) (Ln = Eu, Tb, Dy, Sm, Er, Ho) particles. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), photoluminescence (PL), and cathodoluminescence spectra as well as lifetimes were used to characterize the resulting SiO2@RE2O3 (RE = rare earth elements) and SiO2@Gd2O3:Ln(3+) (Eu3+, Tb3+, Dy3+, Sm3+, Er3+, Ho3+) samples. The obtained core-shell phosphors have perfect spherical shape with narrow size distribution (average size ca. 380 nm), smooth surface and non-agglomeration. The thickness of shells could be easily controlled by changing the number of deposition cycles (40 nm for two deposition cycles).
Resumo:
Rare-earth ions (Eu3+, Tb3+) doped AMoO(4) (A = Sr, Ba) particles with uniform morphologies were successfully prepared through a facile solvothermal process using ethylene glycol (EG) as protecting agent. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), Fourier transform infrared spectroscopy (FT-IR), photoluminescence (PL) spectra and the kinetic decays were performed to characterize these samples. The XRD results reveal that all the doped samples are of high purity and crystallinity and assigned to the tetragonal scheelite-type structure of the AMoO(4) phase. It has been shown that the as-synthesized SrMoO4:Ln and BaMoO4:Ln samples show respective uniform pea nut-like and oval morphologies with narrowsize distribution. The possible growth process of the AMoO(4):Ln has been investigated in detail. The EG/H2O volume ratio, reaction temperature and time have obvious effect on themorphologies and sizes of the as-synthesized products.
Resumo:
Monodisperse rare-earth ion (Eu3+, Ce3+, Tb3+) doped LaPO4 particles with oval morphology were successfully prepared through a facile solvothermal process without further hear treatment. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), Fourier transform infrared spectroscopy (FT-IR), photoluminescence (PL) spectra and the kinetic decays were performed to characterize these samples. The XRD results reveal that all the doped samples are well crystalline at 180 degrees C and assigned to the monoclinic monazite-type structure of the LaPO4 phase. It has been shown that all the as-synthesized samples show perfectly oval morphology with narrow size distribution. The possible growth mechanism of the LapO(4):Ln has been investigated as well.
Resumo:
Y2O3: Eu3+ phosphor layers were deposited on monodisperse SiO2 particles with different sizes ( 300, 500, 900, and 1200 nm) via a sol-gel process, resulting in the formation of Y2O3: Eu3+@SiO2 core-shell particles. X-ray diffraction ( XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy ( TEM), time-resolved photoluminescence ( PL) spectra, and lifetimes were employed to characterize the Y2O3: Eu3+@SiO2 core-shell samples. The results of XRD indicated that the Y2O3: Eu3+ layers began to crystallize on the silica surfaces at 600 degrees C and the crystallinity increased with the elevation of annealing temperature until 900 degrees C. The obtained core-shell particles have perfect spherical shape with narrow size distribution and non-agglomeration. The thickness of the shells could be easily controlled by changing the number of deposition cycles ( 60 nm for three deposition cycles). Under the excitation of ultraviolet ( 250 nm), the Eu3+ ion mainly shows its characteristic red ( 611 nm, D-5(0)-F-7(2)) emissions in the core-shell particles from Y2O3: Eu3+ shells.
Resumo:
In this paper, a facile sol-gel process for producing monodisperse, spherical, and nonaggregated pigment particles with a core/shell structure is reported. Spherical silica particles (245 and 385 nm in diameter) and Cr2O3, alpha-Fe2O3, ZnCo2O4, CuFeCrO4, MgFe2O4, and CoAl2O4 pigments are selected as cores and shells, respectively. The obtained core/shell-structured pigment samples, denoted as SiO2@Cr2O3 (green), SiO2@alpha-Fe2O3 (red), SiO2@MgFe2O4 (brown), SiO2@ZnCo2O4 (dark green), SiO2@CoAl2O4 (blue), and SiO2@CuFeCrO4 (black), are well characterized by using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and UV-vis diffuse reflection, as well as by investigating the magnetic properties. The results of XRD and high-resolution TEM (HRTEM) demonstrate that the pigment shells crystallize well on the surface Of SiO2 Particles. The thickness of the pigment shell can be tuned by the number of coatings, to some extent. These pigment particles can be well dispersed in some solvents (such as glycol) to form relatively more stable suspensions than the commercial products.
Resumo:
We report a simple and effective supramolecular route for facile synthesis of submicrometer-scale, hierarchically self-assembled spherical colloidal particles of adenine - gold(III) hybrid materials at room temperature. Simple mixture of the precursor aqueous solutions of adenine and HAuCl4 at room temperature could result in spontaneous formation of the hybrid colloidal particles. Optimization of the experimental conditions could yield uniform-sized, self-assembled products at 1:4 molar ration of adenine to HAuCl4. Transmission electron microscopy results reveal the formation of hierarchical self-assembled structure of the as-prepared colloidal particles. Concentration dependence, ratio dependence, time dependence, and kinetic measurements have been investigated. Moreover, spectroscopic evidence [i.e., Fourier transform infrared (FTIR) and UV-vis spectra and wide-angle X-ray scattering data] of the interaction motives causing the formation of the colloidal particles is also presented.
Resumo:
Here, we first report a facile one-step one-phase synthetic route to achieve size-controlled gold micro/nanoparticles with narrow size distribution by using o-diaminobenzene as a reducing agent in the presence of poly(N-vinyl-2-pyrrolidone) via a simple wet-chemical approach. All experimental data including that from scanning-electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction techniques indicates that the gold micro/nanoparticles with a narrow size distribution were produced in high yield (similar to 100%).