914 resultados para Séneca, Lucio Anneo, ca. 4 a.C.-65 d.C..
Resumo:
[(eta(6)-C(10)H(14))RuCl(mu-Cl)](2) (eta(6)-C(10)H(14) = eta(6)-p-cymene) was subjected to a bridge-splitting reaction with N,N',N `'-triarylguanidines, (ArNH)(2)C=NAr, in toluene at ambient temperature to afford [(eta(6)-C(10)H(14))RuCl{kappa(2)(N,N')((ArN)(2)C-N(H)Ar)}] (Ar = C(6)H(4)Me-4 (1), C(6)H(4)(OMe)-2 (2), C(6)H(4)Me-2 (3), and C(6)H(3)Me(2)-2,4 (4)) in high yield with a view aimed at understanding the influence of substituent(s) on the aryl rings of the guanidine upon the solid-state structure, solution behavior, and reactivity pattern of the products. Complexes 1-3 upon reaction with NaN(3) in ethanol at ambient temperature afforded [(eta(6)-C(10)H(14))RuN(3){kappa(2)(N,N')((ArN)(2)C-N(H)Ar)}] (Ar = C(6)H(4)Me-4 (5), C(6)H(4)(OMe)-2 (6), and C(6)H(4)Me-2 (7)) in high yield. [3 + 2] cycloaddition reaction of 5-7 with RO(O)C-C C-C(O)OR (R = Et (DEAD) and Me (DMAD)) (diethylacetylenedicarboxylate, DEAD; dimethylacetylenedicarboxylate, DMAD) in CH(2)Cl(2) at ambient temperature afforded [(eta(6)-C(10)H(14))Ru{N(3)C(2)(C(O)OR)(2)}{kappa(2)(N,N')((ArN)(2) C-N(H)Ar)}center dot xH(2)O (x = 1, R = Et, Ar = C(6)H(4)Me-4 (8 center dot H(2)O); x = 0, R = Me, Ar = C(6)H(4)(OMe)-2 (9), and C(6)H(4)Me-2 (10)) in moderate yield. The molecular structures of 1-6, 8 center dot H(2)O, and 10 were determined by single crystal X-ray diffraction data. The ruthenium atom in the aforementioned complexes revealed pseudo octahedral ``three legged piano stool'' geometry. The guanidinate ligand in 2, 3, and 6 revealed syn-syn conformation and that in 4, and 10 revealed syn-anti conformation, and the conformational difference was rationalized on the basis of subtle differences in the stereochemistry of the coordinated nitrogen atoms caused by the aryl moiety in 3 and 4 or steric overload caused by the substituents around the ruthenium atom in 10. The bonding pattern of the CN(3) unit of the guanidinate ligand in the new complexes was explained by invoking n-pi conjugation involving the interaction of the NHAr/N(coord)Ar lone pair with C=N pi* orbital of the imine unit. Complexes 1, 2, 5, 6, 8 center dot H(2)O, and 9 were shown to exist as a single isomer in solution as revealed by NMR data, and this was ascribed to a fast C-N(H)Ar bond rotation caused by a less bulky aryl moiety in these complexes. In contrast, 3 and 10 were shown to exist as a mixture of three and five isomers in about 1:1:1 and 1.0:1.2:2:7:3.5:6.9 ratios, respectively in solution as revealed by a VT (1)H NMR, (1)H-(1)H COSY in conjunction with DEPT-90 (13)C NMR data measured at 233 K in the case of 3. The multiple number of isomers in solution was ascribed to the restricted C-N(H)(o-tolyl) bond rotation caused by the bulky o-tolyl substituent in 3 or the aforementioned restricted C-NH(o-tolyl) bond rotation as well as the restricted ruthenium-arene(centroid) bond rotation caused by the substituents around the ruthenium atom in 10.
Resumo:
The Aib-(D)Ala dipeptide segment has a tendency to form both type-I'/III' and type-I/III beta-turns. The occurrence of prime turns facilitates the formation of beta-hairpin conformations, while type-I/III turns can nucleate helix formation. The octapeptide Boc-Leu-Phe-Val-Aib-(D)Ala-Leu-Phe-Val-OMe (1) has been previously shown to form a beta-hairpin in the crystalline state and in solution. The effects of sequence truncation have been examined using the model peptides Boc-Phe-Val-Aib-Xxx-Leu-Phe-NHMe (2, 6), Boc-Val-Aib-Xxx-Leu-NHMe (3, 7), and Boc-Aib-Xxx-NHMe (4, 8), where Xxx = (D)Ala, Aib. For peptides with central Aib-Aib segments, Boc-Phe-Val-Aib-Aib-Leu-Phe-NHMe (6), Boc-Val-Aib-Aib-Leu-NHMe (7), and Boc-Aib-Aib-NHMe (8) helical conformations have been established by NMR studies in both hydrogen bonding (CD(3)OH) and non-hydrogen bonding (CDCl(3)) solvents. In contrast, the corresponding hexapeptide Boc-Phe-Val-Aib-(D)Ala-Leu-Phe-Val-NHMe (2) favors helical conformations in CDCl(3) and beta-hairpin conformations in CD(3)OH. The beta-turn conformations (type-I'/III) stabilized by intramolecular 4 -> 1 hydrogen bonds are observed for the peptide Boc-Aib-(D)Ala-NHMe (4) and Boc-Aib-Aib-NIiMe (8) in crystals. The tetrapeptide Boc-Val-Aib-Aib-Leu-NHMe (7) adopts an incipient 3(10)-helical conformation stabilized by three 4 -> 1 hydrogen bonds. The peptide Boc-Val-Aib-(D)Ala-Leu-NHMe (3) adopts a novel et-turn conformation, stabilized by three intramolecular hydrogen bonds (two 4 -> 1 and one 5 -> 1). The Aib-L(D)Ala segment adopts a type-I' beta-turn conformation. The observation of an NOE between Val (1) NH <-> HNCH(3) (5) in CD(3)OH suggests, that the solid state conformation is maintained in methanol solutions. (C) 2011 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 96: 744-756, 2011.
Resumo:
A sensitive and selective liquid chromatographic-tandem mass spectrometric (LC-MS-MS) method was developed to determine olanzapine (OLZ) in human urine. After solid-phase extraction with SPE cartridge, the urine sample was analysed on a C-18 column (Symmetry 3.5 mu m, 50 x 4.6 mm i.d) interfaced with a triple quadrupole tandem mass spectrometer. Positive electrospray ionization was employed as the ionization source. The mobile phase consisted of ammonium acetate (pH 7.8)-acetonitrile (10:90, v/v). The method was linear over a concentration range of 1-100 ngml(-1). The lower limit of quantitation was 1 ngml(-1). The intra-day and inter-day relative standard deviation across three validation runs over the entire concentration range was < 11.5 %. The accuracy determined at three concentrations (8.0, 50.0 and 85.0 ngml(-1) OLZ) was within +/- 1.21 % in terms of relative errors.
Resumo:
The synthesis, molecular structure, DNA binding and nuclease activity of Cu4O4 open-cubane tetranuclear copper(II) complex with 3-2-(ethyl amino)ethyl]imino]-2-butanoneoxime (HL) are reported for the first time. The neutral tetranuclear Cu4L4(ClO4)(4)] complex crystallizes in tetragonal space group P (4) over bar2(1)c with the unit cell parameters; a = 13.798(4) angstrom, b = 13.798(4) angstrom, c = 14.119(6) angstrom, V = 2688(16) angstrom(3), Z = 8, R = 0.0636. Symmetrically equivalent copper atoms exhibit a CuN3O3 elongated distorted octahedral coordination environment, with three nitrogen atoms of the L ligand and one oxime-oxygen atom of second L ligand at equatorial positions, one oxime-oxygen atom of the third L ligand and perchlorate oxygen at axial positions. The complex shows quasireversible cyclic voltammetric response at 0.805 V (Delta E-p = 277 mV) at 100 mV s (1) in DMF for the Cu(II)/Cu(I) redox couple. The binding study of the complex with calf-thymus DNA has been investigated using absorption spectrophotometry. The complex shows strong nuclease activity on stranded pBR 322 plasmid DNA in the presence of hydrogen peroxide and marginal nuclease activity in the presence of reducing agent (dithiothreitol). (C) 2012 Elsevier B. V. All rights reserved.
Resumo:
In the present study, variable temperature FT-IR spectroscopic investigations were used to characterize the spectral changes in oleic acid during heating oleic acid in the temperature range from -30 degrees;C to 22 degrees C. In order to extract more information about the spectral variations taking place during the phase transition process, 2D correlation spectroscopy (2DCOS) was employed for the stretching (C?O) and rocking (CH2) band of oleic acid. However, the interpretation of these spectral variations in the FT-IR spectra is not straightforward, because the absorption bands are heavily overlapped and change due to two processes: recrystallization of the ?-phase and melting of the oleic acid. Furthermore, the solid phase transition from the ?- to the a-phase was also observed between -4 degrees C and -2 degrees C. Thus, for a more detailed 2DCOS analysis, we have split up the spectral data set in the subsets recorded between -30 degrees C to -16 degrees C, -16 degrees C to 10 degrees C, and 10 degrees C to 22 degrees C. In the corresponding synchronous and asynchronous 2D correlation plots, absorption bands that are characteristic of the crystalline and amorphous regions of oleic acid were separated.
Resumo:
Sapphirine + quartz and orthopyroxene + sillimanite occur in garnet from an Mg-Al granulite from the Central Zone of the Limpopo Complex in South Africa. Textural evidence and a chemical gradient in garnet between the zones preserving the inclusions argue for the formation of sapphirine + quartz after orthopyroxene + sillimanite. Petrological observations, pressure-temperature phase diagrams, and compositional and model proportion results on isopleths indicate the sapphirine + quartz + garnet + orthopyroxene (high-Al) assemblage as the peak metamorphic assemblage (similar to 1050 degrees C at similar to 8.5 kbars), whereas orthopyroxene (low-Al) + sillimanite represents the prograde stage (at ca. 900 degrees C at similar to 8.5 kbars). Our report of these two diagnostic ultrahigh-temperature mineral assemblages in garnet from an Mg-Al granulite is unique, given the rare occurrence of sapphirine + quartz postdating orthopyroxene + sillimanite assemblage in granulites.
Resumo:
The experimental solubilities of the mixture of nitrophenol (m- and p-) isomers were determined at 308, 318 and 328 K over a pressure range of 10-17.55 MPa. Compared to the binary solubilities, the ternary solubilities of m-nitrophenol increased at 308, 318 and 328 K. The ternary solubilities of p-nitrophenol increased at 308 K, while the ternary solubilities decreased at lower pressures and increased at higher pressure at 318 and 328 K. The solubilities of the solid mixtures in supercritical carbon dioxide (SCCO2) were correlated with solution models by incorporating the non-idealities using activity coefficient based models. The Wilson and NRTL activity coefficient models were applied to determine the nature of the interactions between the molecules. The equation developed by using the NRTL model has three parameters and correlates mixture solubilities of solid solutes in terms of temperature and cosolute composition. The equation derived from the Wilson model contains five parameters and correlates solubilities in terms of temperature, density and cosolute composition. These two new equations developed in this work were used to correlate the solubilities of 25 binary solid mixtures including the current data. The average AARDs of the model equations derived using the NRTL and Wilson models for the solid mixtures were found to be 7% and 4%, respectively. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
By using the lower-bound finite element limit analysis, the stability of a long unsupported circular tunnel has been examined with an inclusion of seismic body forces. The numerical results have been presented in terms of a non-dimensional stability number (gamma H/c) which is plotted as a function of horizontal seismic earth pressure coefficient (k (h)) for different combinations of H/D and I center dot; where (1) H is the depth of the crest of the tunnel from ground surface, (2) D is the diameter of the tunnel, (3) k (h) is the earthquake acceleration coefficient and (4) gamma, c and I center dot define unit weight, cohesion and internal friction angle of soil mass, respectively. The stability numbers have been found to decrease continuously with an increase in k (h). With an inclusion of k (h), the plastic zone around the periphery of the tunnel becomes asymmetric. As compared to the results reported in the literature, the present analysis provides a little lower estimate of the stability numbers. The numerical results obtained would be useful for examining the stability of unsupported tunnel under seismic forces.
Resumo:
Heme metabolism is central to malaria parasite biology. The parasite acquires heme from host hemoglobin in the intraerythrocytic stages and stores it as hemozoin to prevent free heme toxicity. The parasite can also synthesize heme de novo, and all the enzymes in the pathway are characterized. To study the role of the dual heme sources in malaria parasite growth and development, we knocked out the first enzyme, d-aminolevulinate synthase (ALAS), and the last enzyme, ferrochelatase (FC), in the heme-biosynthetic pathway of Plasmodium berghei (Pb). The wild-type and knockout (KO) parasites had similar intraerythrocytic growth patterns in mice. We carried out in vitro radiolabeling of heme in Pb-infected mouse reticulocytes and Plasmodium falciparum-infected human RBCs using 4-(14) C] aminolevulinic acid (ALA). We found that the parasites incorporated both host hemoglobin-heme and parasite-synthesized heme into hemozoin and mitochondrial cytochromes. The similar fates of the two heme sources suggest that they may serve as backup mechanisms to provide heme in the intraerythrocytic stages. Nevertheless, the de novo pathway is absolutely essential for parasite development in the mosquito and liver stages. PbKO parasites formed drastically reduced oocysts and did not form sporozoites in the salivary glands. Oocyst production in PbALASKO parasites recovered when mosquitoes received an ALA supplement. PbALASKO sporozoites could infect mice only when the mice received an ALA supplement. Our results indicate the potential for new therapeutic interventions targeting the heme-biosynthetic pathway in the parasite during the mosquito and liver stages.
Resumo:
Graphene nanosheet (GNS) was synthesized by using microwave plasma enhanced CVD on copper substrate and followed by evaporation of tin metal. Scanning and transmission electron microscopy show that nanosize Sn particles are well embedded into the GNS matrix. The composition, structure, and electrochemical properties were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), cyclic voltammetry (CV) and chrono-potentiometry. The first discharge capacity of as-deposited and annealed SnGNS obtained was 1551 mA h/g and 975 mA h/g, respectively. The anodes show excellent cyclic performance and coulombic efficiency.
Resumo:
Four neutral polynuclear magnetic clusters, (Mn6Mn2Na2I)-Mn-III-Na-II(N-3)(8)(mu(1)-O)(2)(L-1)(6)(CH3OH)(2)] (1), (Mn6Na2I)-Na-III(N-3)(4)(mu(4)-O)(2)(L-2)(4)(CH3COO)(4)] (2), Ni-5(II)(N-3)(4)(HL1)(4)(HCOO)(2)(CH3OH)(2)(H2O)(2)]center dot 2CH(3)OH (3) and (Ni4Na2I)-Na-II(N-3)(4)(HL2)(6)]center dot 2CH(3)OH (4) have been synthesized using tetradentate ligands H2L1-2 along with azide as a co-ligand. H2L1-2 are the products formed in situ upon condensation of 2-hydroxy-3-methoxybenzaldehyde with 1-aminopropan-2-ol and 1-aminopropan-3-ol, respectively. Single crystal X-ray diffraction and bond valence sum calculation showed that complex 1 is composed of both Mn-III and Mn-II. Complex 3 contains coordinated formate, which was formed upon in situ oxidation of methanol. The magnetic study over a wide range of temperatures of all the complexes (1-4) showed that 1 and 2 are antiferromagnetic whereas other two (3-4) are predominantly ferromagnetic. The estimated ground states of the complexes are S approximate to 3(1), S = 4(2), S = 5(3) and S approximate to 4(4), respectively. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Algae grown in outdoor reactors (volume: 10 L and depth: 20 cm) were fed directly with filtered and sterilised municipal wastewater. The nutrient removal efficiencies were 86%, 90%, 89%, 70% and 76% for TOC, TN, NH4-N, TP and OP, respectively, and lipid content varied from 18% to 28.5% of dry algal biomass. Biomass productivity of similar to 122 mg/l/d (surface productivity 24.4 g/m(2)/d) and lipid productivity of similar to 32 mg/l/d were recorded. Gas chromatography and mass spectrometry (GC-MS) analyses of the fatty acid methyl esters (FAME) showed a higher content of desirable fatty acids (bearing biofuel properties) with major contributions from saturates such as palmitic acid C16:0; similar to 40%] and stearic acid C18:0; similar to 34%], followed by unsaturates such as oleic acid C18:1(9); similar to 10%] and linoleic acid C18:2(9,12); similar to 5%]. The decomposition of algal biomass and reactor residues with an exothermic heat content of 123.4 J/g provides the scope for further energy derivation. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
A newly designed and structurally characterized cell permeable diformyl-p-cresol based receptor (HL) selectively senses the AsO33- ion up to ca. 4.1 ppb in aqueous media over the other competitive ions at biological pH through an intermolecular H-bonding induced CHEF (chelationenhanced fluorescence) process, established by detailed experimental and theoretical studies. This biofriendly probe is highly competent in recognizing the existence of AsO33- ions in a living organism by developing an image under a fluorescence microscope and useful to estimate the amount of arsenite ions in various water samples.
Resumo:
Blends of bromo-terminated polystyrene (PS-Br) and poly(vinyl methylether) (PVME) exhibit lower critical solution temperatures. In this study, PS-Br was designed by atom transfer radical polymerization and was converted to thiol-capped polystyrene (PS-SH) by reacting with thiourea. The silver nanoparticles (nAg) were then decorated with covalently bound PS-SH macromolecules to improve the phase miscibility in the PS-Br-PVME blends. Thermally induced demixing in this model blend was followed in the presence of polystyrene immobilized silver nanoparticles (PS-g-nAg). The graft density of the PS macromolecules was estimated to be ca. 0.78 chains per nm(2). Although the matrix and the grafted molecular weights were similar, PS-g-nAg particles were expelled from the PS phase and were localized in the PVME phase of the blends. This was addressed with respect to intermediate graft density and favourable PS-PVME contacts from microscopic interactions point of view. Interestingly, blends with 0.5 wt% PS-g-nAg delayed the spinodal decomposition temperature in the blends by ca. 18 degrees C with respect to the control blends. The scale of cooperativity, as determined by differential scanning calorimetry, increased only marginally in the case of PS-g-nAg; however, it increased significantly in the presence of bare nAg particles.
Resumo:
Surface energy processes has an essential role in urban weather, climate and hydrosphere cycles, as well in urban heat redistribution. The research was undertaken to analyze the potential of Landsat and MODIS data in retrieving biophysical parameters in estimating land surface temperature & heat fluxes diurnally in summer and winter seasons of years 2000 and 2010 and understanding its effect on anthropogenic heat disturbance over Delhi and surrounding region. Results show that during years 2000-2010, settlement and industrial area increased from 5.66 to 11.74% and 4.92 to 11.87% respectively which in turn has direct effect on land surface temperature (LST) and heat fluxes including anthropogenic heat flux. Based on the energy balance model for land surface, a method to estimate the increase in anthropogenic heat flux (Has) has been proposed. The settlement and industrial areas has higher amounts of energy consumed and has high values of Has in all seasons. The comparison of satellite derived LST with that of field measured values show that Landsat estimated values are in close agreement within error of 2 degrees C than MODIS with an error of 3 degrees C. It was observed that, during 2000 and 2010, the average change in surface temperature using Landsat over settlement & industrial areas of both seasons is 1.4 degrees C & for MODIS data is 3.7 degrees C. The seasonal average change in anthropogenic heat flux (Has) estimated using Landsat & MODIS is up by around 38 W/m(2) and 62 W/m(2) respectively while higher change is observed over settlement and concrete structures. The study reveals that the dynamic range of Has values has increased in the 10 year period due to the strong anthropogenic influence over the area. The study showed that anthropogenic heat flux is an indicator of the strength of urban heat island effect, and can be used to quantify the magnitude of the urban heat island effect. (C) 2013 Elsevier Ltd. All rights reserved.