841 resultados para Robotic benchmarks
Resumo:
Since 1998, the Aurora project has been investigating the use of a robotic platform as a tool for therapy use with children with autism. A key issue in this project is the evaluation of the interactions, which are not constricted and involve the child moving freely. Additionally, the response of the children is an important factor which must emerge from the robot trial sessions and the evaluation methodology, in order to guide further development work.
Resumo:
A robot mounted camera is useful in many machine vision tasks as it allows control over view direction and position. In this paper we report a technique for calibrating both the robot and the camera using only a single corresponding point. All existing head-eye calibration systems we have encountered rely on using pre-calibrated robots, pre- calibrated cameras, special calibration objects or combinations of these. Our method avoids using large scale non-linear optimizations by recovering the parameters in small dependent groups. This is done by performing a series of planned, but initially uncalibrated robot movements. Many of the kinematic parameters are obtained using only camera views in which the calibration feature is at, or near the image center, thus avoiding errors which could be introduced by lens distortion. The calibration is shown to be both stable and accurate. The robotic system we use consists of camera with pan-tilt capability mounted on a Cartesian robot, providing a total of 5 degrees of freedom.
Resumo:
This paper shows that a wavelet network and a linear term can be advantageously combined for the purpose of non linear system identification. The theoretical foundation of this approach is laid by proving that radial wavelets are orthogonal to linear functions. A constructive procedure for building such nonlinear regression structures, termed linear-wavelet models, is described. For illustration, sim ulation data are used to identify a model for a two-link robotic manipulator. The results show that the introduction of wavelets does improve the prediction ability of a linear model.
Resumo:
Fieldwork is regarded as an important component of many bioscience degree programmes. QAA benchmarks statements refer explicitly to the importance of fieldwork, although give no indication of amounts of field provision expected. Previous research has highlighted the importance of fieldwork to the learning of both subject-specific and transferable skills. However, it is unclear how the amount and type of fieldwork currently offered is being affected by the recent expansion in student numbers and current funding constraints. Here we review contemporary literature and report on the results of a questionnaire completed by bioscience tutors across 33 UK institutions. The results suggest, perhaps contrary to anecdotal evidence, that the amount of fieldwork being undertaken by students is not in decline and that on the whole, programmes contain reasonable amounts of fieldwork. The majority of programmes involved UK-based fieldwork, but a number of programmes also offered ‘exotic’ overseas fieldwork which was considered important in terms of student recruitment as well as exposing students to a diversity of field learning environments. Tutors were very clear about the benefits of fieldwork and the need to be proactive to maintain its provision.
Resumo:
Here we present an economical and versatile platform for developing motor control and sensory feedback of a prosthetic hand via in vitro mammalian peripheral nerve activity. In this study, closed-loop control of the grasp function of the prosthetic hand was achieved by stimulation of a peripheral nerve preparation in response to slip sensor data from a robotic hand, forming a rudimentary reflex action. The single degree of freedom grasp was triggered by single unit activity from motor and sensory fibers as a result of stimulation. The work presented here provides a novel, reproducible, economic, and robust platform for experimenting with neural control of prosthetic devices before attempting in vivo implementation.
Resumo:
The existence of a specialized imitation module in humans is hotly debated. Studies suggesting a specific imitation impairment in individuals with autism spectrum disorders (ASD) support a modular view. However, the voluntary imitation tasks used in these studies (which require socio-cognitive abilities in addition to imitation for successful performance) cannot support claims of a specific impairment. Accordingly, an automatic imitation paradigm (a ‘cleaner’ measure of imitative ability) was used to assess the imitative ability of 16 adults with ASD and 16 non-autistic matched control participants. Participants performed a prespecified hand action in response to observed hand actions performed either by a human or a robotic hand. On compatible trials the stimulus and response actions matched, while on incompatible trials the two actions did not match. Replicating previous findings, the Control group showed an automatic imitation effect: responses on compatible trials were faster than those on incompatible trials. This effect was greater when responses were made to human than to robotic actions (‘animacy bias’). The ASD group also showed an automatic imitation effect and a larger animacy bias than the Control group. We discuss these findings with reference to the literature on imitation in ASD and theories of imitation.
Resumo:
Purpose – The paper addresses the practical problems which emerge when attempting to apply longitudinal approaches to the assessment of property depreciation using valuation-based data. These problems relate to inconsistent valuation regimes and the difficulties in finding appropriate benchmarks. Design/methodology/approach – The paper adopts a case study of seven major office locations around Europe and attempts to determine ten-year rental value depreciation rates based on a longitudinal approach using IPD, CBRE and BNP Paribas datasets. Findings – The depreciation rates range from a 5 per cent PA depreciation rate in Frankfurt to a 2 per cent appreciation rate in Stockholm. The results are discussed in the context of the difficulties in applying this method with inconsistent data. Research limitations/implications – The paper has methodological implications for measuring property investment depreciation and provides an example of the problems in adopting theoretically sound approaches with inconsistent information. Practical implications – Valuations play an important role in performance measurement and cross border investment decision making and, therefore, knowledge of inconsistency of valuation practice aids decision making and informs any application of valuation-based data in the attainment of depreciation rates. Originality/value – The paper provides new insights into the use of property market valuation data in a cross-border context, insights that previously had been anecdotal and unproven in nature.
Resumo:
Strokes affect thousands of people worldwide leaving sufferers with severe disabilities affecting their daily activities. In recent years, new rehabilitation techniques have emerged such as constraint-induced therapy, biofeedback therapy and robot-aided therapy. In particular, robotic techniques allow precise recording of movements and application of forces to the affected limb, making it a valuable tool for motor rehabilitation. In addition, robot-aided therapy can utilise visual cues conveyed on a computer screen to convert repetitive movement practice into an engaging task such as a game. Visual cues can also be used to control the information sent to the patient about exercise performance and to potentially address psychosomatic variables influencing therapy. This paper overviews the current state-of-the-art on upper limb robot-mediated therapy with a focal point on the technical requirements of robotic therapy devices leading to the development of upper limb rehabilitation techniques that facilitate reach-to-touch, fine motor control, whole-arm movements and promote rehabilitation beyond hospital stay. The reviewed literature suggest that while there is evidence supporting the use of this technology to reduce functional impairment, besides the technological push, the challenge ahead lies on provision of effective assessment of outcome and modalities that have a stronger impact transferring functional gains into functional independence.
Resumo:
The orthodox approach for incentivising Demand Side Participation (DSP) programs is that utility losses from capital, installation and planning costs should be recovered under financial incentive mechanisms which aim to ensure that utilities have the right incentives to implement DSP activities. The recent national smart metering roll-out in the UK implies that this approach needs to be reassessed since utilities will recover the capital costs associated with DSP technology through bills. This paper introduces a reward and penalty mechanism focusing on residential users. DSP planning costs are recovered through payments from those consumers who do not react to peak signals. Those consumers who do react are rewarded by paying lower bills. Because real-time incentives to residential consumers tend to fail due to the negligible amounts associated with net gains (and losses) or individual users, in the proposed mechanism the regulator determines benchmarks which are matched against responses to signals and caps the level of rewards/penalties to avoid market distortions. The paper presents an overview of existing financial incentive mechanisms for DSP; introduces the reward/penalty mechanism aimed at fostering DSP under the hypothesis of smart metering roll-out; considers the costs faced by utilities for DSP programs; assesses linear rate effects and value changes; introduces compensatory weights for those consumers who have physical or financial impediments; and shows findings based on simulation runs on three discrete levels of elasticity.
Resumo:
Aircraft Maintenance, Repair and Overhaul (MRO) agencies rely largely on row-data based quotation systems to select the best suppliers for the customers (airlines). The data quantity and quality becomes a key issue to determining the success of an MRO job, since we need to ensure we achieve cost and quality benchmarks. This paper introduces a data mining approach to create an MRO quotation system that enhances the data quantity and data quality, and enables significantly more precise MRO job quotations. Regular Expression was utilized to analyse descriptive textual feedback (i.e. engineer’s reports) in order to extract more referable highly normalised data for job quotation. A text mining based key influencer analysis function enables the user to proactively select sub-parts, defects and possible solutions to make queries more accurate. Implementation results show that system data would improve cost quotation in 40% of MRO jobs, would reduce service cost without causing a drop in service quality.
Resumo:
While style analysis has been studied extensively in equity markets, applications of this valuable tool for measuring and benchmarking performance and risk in a real estate context are still relatively new. Most previous real estate studies on this topic have identified three investment categories (rather than styles): sectors, administrative regions and economic regions. However, the low explanatory power reveals the need to extend this analysis to other investment styles. We identify four main real estate investment styles and apply a multivariate model to randomly generated portfolios to test the significance of each style in explaining portfolio returns. Results show that significant alpha performance is significantly reduced when we account for the new investment styles, with small vs. big properties being the dominant one. Secondly, we find that the probability of obtaining alpha performance is dependent upon the actual exposure of funds to style factors. Finally we obtain that both alpha and systematic risk levels are linked to the actual characteristics of portfolios. Our overall results suggest that it would be beneficial for real estate fund managers to use these style factors to set benchmarks and to analyze portfolio returns.
Resumo:
We consider the general response theory recently proposed by Ruelle for describing the impact of small perturbations to the non-equilibrium steady states resulting from Axiom A dynamical systems. We show that the causality of the response functions entails the possibility of writing a set of Kramers-Kronig (K-K) relations for the corresponding susceptibilities at all orders of nonlinearity. Nonetheless, only a special class of directly observable susceptibilities obey K-K relations. Specific results are provided for the case of arbitrary order harmonic response, which allows for a very comprehensive K-K analysis and the establishment of sum rules connecting the asymptotic behavior of the harmonic generation susceptibility to the short-time response of the perturbed system. These results set in a more general theoretical framework previous findings obtained for optical systems and simple mechanical models, and shed light on the very general impact of considering the principle of causality for testing self-consistency: the described dispersion relations constitute unavoidable benchmarks that any experimental and model generated dataset must obey. The theory exposed in the present paper is dual to the time-dependent theory of perturbations to equilibrium states and to non-equilibrium steady states, and has in principle similar range of applicability and limitations. In order to connect the equilibrium and the non equilibrium steady state case, we show how to rewrite the classical response theory by Kubo so that response functions formally identical to those proposed by Ruelle, apart from the measure involved in the phase space integration, are obtained. These results, taking into account the chaotic hypothesis by Gallavotti and Cohen, might be relevant in several fields, including climate research. In particular, whereas the fluctuation-dissipation theorem does not work for non-equilibrium systems, because of the non-equivalence between internal and external fluctuations, K-K relations might be robust tools for the definition of a self-consistent theory of climate change.
Resumo:
The authors present an active vision system which performs a surveillance task in everyday dynamic scenes. The system is based around simple, rapid motion processors and a control strategy which uses both position and velocity information. The surveillance task is defined in terms of two separate behavioral subsystems, saccade and smooth pursuit, which are demonstrated individually on the system. It is shown how these and other elementary responses to 2D motion can be built up into behavior sequences, and how judicious close cooperation between vision and control results in smooth transitions between the behaviors. These ideas are demonstrated by an implementation of a saccade to smooth pursuit surveillance system on a high-performance robotic hand/eye platform.