878 resultados para Respiratory muscle strength, SNIP.
Resumo:
Neutrophils constitute 50-60% of all circulating leukocytes; they present the first line of microbicidal defense and are involved in inflammatory responses. To examine immunocompetence in athletes, numerous studies have investigated the effects of exercise on the number of circulating neutrophils and their response to stimulation by chemotactic stimuli and activating factors. Exercise causes a biphasic increase in the number of neutrophils in the blood, arising from increases in catecholamine and cortisol concentrations. Moderate intensity exercise may enhance neutrophil respiratory burst activity, possibly through increases in the concentrations of growth hormone and the inflammatory cytokine IL-6. In contrast, intense or long duration exercise may suppress neutrophil degranulation and the production of reactive oxidants via elevated circulating concentrations of epinephrine (adrenaline) and cortisol. There is evidence of neutrophil degranulation and activation of the respiratory burst following exercise-induced muscle damage. In principle, improved responsiveness of neutrophils to stimulation following exercise of moderate intensity could mean that individuals participating in moderate exercise may have improved resistance to infection. Conversely, competitive athletes undertaking regular intense exercise may be at greater risk of contracting illness. However there are limited data to support this concept. To elucidate the cellular mechanisms involved in the neutrophil responses to exercise, researchers have examined changes in the expression of cell membrane receptors, the production and release of reactive oxidants and more recently, calcium signaling. The investigation of possible modifications of other signal transduction events following exercise has not been possible because of current methodological limitations. At present, variation in exercise-induced alterations in neutrophil function appears to be due to differences in exercise protocols, training status, sampling points and laboratory assay techniques.
Resumo:
The aim of this study was to determine the effects of 7 weeks of high- and low-velocity resistance training on strength and sprint running performance in nine male elite junior sprint runners (age 19.0 +/- 1.4 years, best 100 m times 10.89 +/- 0.21 s; mean +/- s). The athletes continued their sprint training throughout the study, but their resistance training programme was replaced by one in which the movement velocities of hip extension and flexion, knee extension and flexion and squat exercises varied according to the loads lifted (i.e. 30-50% and 70-90% of 1-RM in the high- and low-velocity training groups, respectively). There were no between-group differences in hip flexion or extension torque produced at 1.05, 4.74 or 8.42 rad . s(-1), 20 m acceleration or 20 m 'flying' running times, or 1-RM squat lift strength either before or after training. This was despite significant improvements in 20 m acceleration time (P < 0.01), squat strength (P< 0.05), isokinetic hip flexion torque at 4.74 rad . s(-1) and hip extension torque at 1.05 and 4.74 rad . s(-1) for the athletes as a whole over the training period. Although velocity-specific strength adaptations have been shown to occur rapidly in untrained and non-concurrently training individuals, the present results suggest a lack of velocity-specific performance changes in elite concurrently training sprint runners performing a combination of traditional and semi-specific resistance training exercises.
Resumo:
Posteroanterior stiffness of the lumbar spine is influenced by factors, including trunk muscle activity and intra-abdominal pressure (IAP). Because these factors vary with breathing, this study investigated whether stiffness is modulated in a cyclical manner with respiration. A further aim was to investigate the relationship between stiffness and IAP or abdominal and paraspinal muscle activity. Stiffness was measured from force-displacement responses of a posteroanterior force applied over the spinous process of L-2 and L-4. Recordings were made of IAP and electromyographic activity from L-4/L-2 erector spinae, abdominal muscles, and chest wall. Stiffness was measured with the lung volume held at the extremes of tidal volume and at greater and lesser volumes. Stiffness at L-4 and L-2 increased above base-level values at functional residual capacity (L-2 14.9 N/mm and L-4 15.3 N/mm) with both inspiratory and expiratory efforts. The increase was related to the respiratory effort and was greatest during maximum expiration (L-2 24.9 N/mm and L-4 23.9 N/mm). The results indicate that changes in trunk muscle activity and IAP with respiratory efforts modulate spinal stiffness. In addition, the diaphragm may augment spinal stiffness via attachment of its crural fibers to the lumbar vertebrae.
Resumo:
Acute and chronic respiratory failure is one of the major and potentially life-threatening features in individuals with myotonic dystrophy type 1 (DM1). Despite several clinical demonstrations showing respiratory problems in DM1 patients, the mechanisms are still not completely understood. This study was designed to investigate whether the DMSXL transgenic mouse model for DM1 exhibits respiratory disorders and, if so, to identify the pathological changes underlying these respiratory problems. Using pressure plethysmography, we assessed the breathing function in control mice and DMSXL mice generated after large expansions of the CTG repeat in successive generations of DM1 transgenic mice. Statistical analysis of breathing function measurements revealed a significant decrease in the most relevant respiratory parameters in DMSXL mice, indicating impaired respiratory function. Histological and morphometric analysis showed pathological changes in diaphragmatic muscle of DMSXL mice, characterized by an increase in the percentage of type I muscle fibers, the presence of central nuclei, partial denervation of end-plates (EPs) and a significant reduction in their size, shape complexity and density of acetylcholine receptors, all of which reflect a possible breakdown in communication between the diaphragmatic muscles fibers and the nerve terminals. Diaphragm muscle abnormalities were accompanied by an accumulation of mutant DMPK RNA foci in muscle fiber nuclei. Moreover, in DMSXL mice, the unmyelinated phrenic afferents are significantly lower. Also in these mice, significant neuronopathy was not detected in either cervical phrenic motor neurons or brainstem respiratory neurons. Because EPs are involved in the transmission of action potentials and the unmyelinated phrenic afferents exert a modulating influence on the respiratory drive, the pathological alterations affecting these structures might underlie the respiratory impairment detected in DMSXL mice. Understanding mechanisms of respiratory deficiency should guide pharmaceutical and clinical research towards better therapy for the respiratory deficits associated with DM1.
Resumo:
COPD is associated with some skeletal muscle dysfunction which contributes to a poor exercise tolerance. This dysfunction results from multiple factors: physical inactivity, corticosteroids, smoking, malnutrition, anabolic deficiency, systemic inflammation, hypoxia, oxidative stress. Respiratory rehabilitation is based on exercise training and allows patients with COPD to experience less dyspnoea, and to improve their exercise tolerance and quality of life. Not all patients, however, benefit from rehabilitation. Acknowledging the different factors leading to muscular dysfunction allows one to foresee new avenues to improve efficacy of exercise training in COPD.
Resumo:
Aging is commonly associated with a loss of muscle mass and strength, resulting in falls, functional decline, and the subjective feeling of weakness. Exercise modulates the morbidities of muscle aging. Most studies, however, have examined muscle-loss changes in sedentary aging adults. This leaves the question of whether the changes that are commonly associated with muscle aging reflect the true physiology of muscle aging or whether they reflect disuse atrophy. This study evaluated whether high levels of chronic exercise prevents the loss of lean muscle mass and strength experienced in sedentary aging adults. A cross-section of 40 high-level recreational athletes ("masters athletes") who were aged 40 to 81 years and trained 4 to 5 times per week underwent tests of health/activity, body composition, quadriceps peak torque (PT), and magnetic resonance imaging of bilateral quadriceps. Mid-thigh muscle area, quadriceps area (QA), subcutaneous adipose tissue, and intramuscular adipose tissue were quantified in magnetic resonance imaging using medical image processing, analysis, and visualization software. One-way analysis of variance was used to examine age group differences. Relationships were evaluated using Spearman correlations. Mid-thigh muscle area (P = 0.31) and lean mass (P = 0.15) did not increase with age and were significantly related to retention of mid-thigh muscle area (P < 0.0001). This occurred despite an increase in total body fat percentage (P = 0.003) with age. Mid-thigh muscle area (P = 0.12), QA (P = 0.17), and quadriceps PT did not decline with age. Specific strength (strength per QA) did not decline significantly with age (P = 0.06). As muscle area increased, PT increased significantly (P = 0.008). There was not a significant relationship between intramuscular adipose tissue (P = 0.71) or lean mass (P = 0.4) and PT. This study contradicts the common observation that muscle mass and strength decline as a function of aging alone. Instead, these declines may signal the effect of chronic disuse rather than muscle aging. Evaluation of masters athletes removes disuse as a confounding variable in the study of lower-extremity function and loss of lean muscle mass. This maintenance of muscle mass and strength may decrease or eliminate the falls, functional decline, and loss of independence that are commonly seen in aging adults.
Resumo:
A 5-year-old boy was referred to our neurology clinic for suspected myopathy. His parents reported normal upper extremity strength and no limitation in daily activities; however, he was unable to raise his arms above his head. On examination, both shoulders were down-slanting and anteriorly displaced, leading to a webbed neck appearance. Muscle MRI demonstrated isolated bilateral aplasia of the trapezius muscles. His father was found to have a unilateral partial trapezius hypoplasia with no functional consequences. Conclusion: Congenital aplasia of the trapezius muscle is a rare condition; bilateral aplasia of the muscle, having been reported in only five cases, is most often associated with aplasia of the pectoralis major. This is the first report to our knowledge to demonstrate bilateral isolated trapezius aplasia by MRI.
Resumo:
INTRODUCTION: Spectral frequencies of the surface electromyogram (sEMG) increase with contraction force, but debate still exists on whether this increase is affected by various methodological and anatomical factors. This study aimed to investigate the influence of inter-electrode distance (IED) and contraction modality (step-wise vs. ramp) on the changes in spectral frequencies with increasing contraction strength for the vastus lateralis (VL) and vastus medialis (VM) muscles. METHODS: Twenty healthy male volunteers were assessed for isometric sEMG activity of the VM and VL, with the knee at 90° flexion. Subjects performed isometric ramp contractions in knee extension (6-s duration) with the force gradually increasing from 0 to 80 % MVC. Also, subjects performed 4-s step-wise isometric contractions at 10, 20, 30, 40, 50, 60, 70, and 80 % MVC. Interference sEMG signals were recorded simultaneously at different IEDs: 10, 20, 30, and 50 mm. The mean (F mean) and median (F median) frequencies and root mean square (RMS) of sEMG signals were calculated. RESULTS: For all IEDs, contraction modalities, and muscles tested, spectral frequencies increased significantly with increasing level of force up to 50-60 % MVC force. Spectral indexes increased systematically as IED was decreased. The sensitivity of spectral frequencies to changes in contraction force was independent of IED. The behaviour of spectral indexes with increasing contraction force was similar for step-wise and ramp contractions. CONCLUSIONS: In the VL and VM muscles, it is highly unlikely that a particular inter-electrode distance or contraction modality could have prevented the observation of the full extent of the increase in spectral frequencies with increasing force level.
Resumo:
BACKGROUND: Prospective assessment of pedicled extrathoracic muscle flaps for the closure of large intrathoracic airway defects after noncircumferential resection in situations where an end-to-end reconstruction seemed risky (defects of > 4-cm length, desmoplastic reactions after previous infection or radiochemotherapy). METHODS: From 1996 to 2001, 13 intrathoracic muscle transpositions (6 latissimus dorsi and 7 serratus anterior muscle flaps) were performed to close defects of the intrathoracic airways after noncircumferential resection for tumor (n = 5), large tracheoesophageal fistula (n = 2), delayed tracheal injury (n = 1) and bronchopleural fistula (n = 5). In 2 patients, the extent of the tracheal defect required reinforcement of the reconstruction by use of a rib segment embedded into the muscle flap followed by temporary tracheal stenting. Patient follow-up was by clinical examination bronchoscopy and biopsy, pulmonary function tests, and dynamic virtual bronchoscopy by computed tomographic (CT) scan during inspiration and expiration. RESULTS: The airway defects ranged from 2 x 1 cm to 8 x 4 cm and involved up to 50% of the airway circumference. They were all successfully closed using muscle flaps with no mortality and all patients were extubated within 24 hours. Bronchoscopy revealed epithelialization of the reconstructions without dehiscence, stenosis, or recurrence of fistulas. The flow-volume loop was preserved in all patients and dynamic virtual bronchoscopy revealed no significant difference in the endoluminal cross surface areas of the airway between inspiration and expiration above (45 +/- 21 mm(2)), at the site (76 +/- 23 mm(2)) and below the reconstruction (65 +/- 40 mm(2)). CONCLUSIONS: Intrathoracic airway defects of up to 50% of the circumference may be repaired using extrathoracic muscle flaps when an end-to-end reconstruction is not feasible.
Resumo:
Infected lateral cervical cysts in newborn are rare. We present the case of a baby born at 41 weeks of gestation. At day 3, persistent cyanosis was noted, and a mass appeared in the left cervical region next to the sternocleidomastoid muscle. No cutaneous sinus was visible. Ultrasound imaging showed no sign of blood flow within the mass and no septae. The mass extended down to the aortic arch and pushed the trachea to the right. A cervical lymphangioma was first suspected. Puncture of the mass evacuated 80 mL of pus, and a drain was put in place. Opacification through the drain showed a tract originating from the left pyriform fossa. Preoperative laryngoscopy and catheterization of the fistula tract confirmed the diagnosis. The cyst was totally excised up to the sinus with the assistance of a guidewire inserted orally through a rigid laryngoscope. This is a rare case of an infected pyriform sinus cyst in the neonatal period.
Resumo:
In a prospective nonrandomized study, using each baby as his or her own control, we compared intracranial pressure (anterior fontanel pressure as measured with the Digilab pneumotonometer), cerebral perfusion pressure, BP, heart rate, transcutaneous Po2, and transcutaneous Pco2 before, during, and after endotracheal suctioning, with and without muscle paralysis, in 28 critically ill preterm infants with respiratory distress syndrome. With suctioning, there was a small but significant increase in intracranial pressure in paralyzed patients (from 13.7 [mean] +/- 4.4 mm Hg [SD] to 15.8 +/- 5.2 mm Hg) but a significantly larger (P less than .001) increase when they were not paralyzed (from 12.5 +/- 3.6 to 28.5 +/- 8.3 mm Hg). Suctioning led to a slight increase in BP with (from 45.3 +/- 9.1 to 48.0 +/- 8.7 mm Hg) and without muscle paralysis (from 45.1 +/- 9.4 to 50.0 +/- 11.7 mm Hg); but there was no significant difference between the two groups. The cerebral perfusion pressure in paralyzed infants did not show any significant change before, during, and after suctioning (31.5 +/- 9.1 mm Hg before v 32.0 +/- 8.7 mm Hg during suctioning), but without muscle paralysis cerebral perfusion pressure decreased (P less than .001) from 32.8 +/- 9.7 to 21.3 +/- 13.1 mm Hg. Suctioning induced a slight decrease in mean heart rate and transcutaneous Po2, but pancuronium did not alter these changes. There was no statistical difference in transcutaneous Pco2 before, during, and after suctioning with and without muscle paralysis.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Duchenne muscular dystrophy is is the most common form of the childhood muscular dystrophies. It follows a predictable clinical course marked by progressive skeletal muscle weakness, lost of ambulation before teen-age and death in early adulthood secondary to respiratory or cardiac failure. Becker muscular dystrophy is less common and has a milder clinical course but also results in respiratory and cardiac failure.Altough recent advances in respiratory care and new technologies have improved the outlook many patients already received only a traditional non-interventional approach. The aims of this work are: to analyse the pathophysiology and natural history of respiratory function in these diseases, to descript their clinical manifestations, to present the diagnostics tools and to provide recommendations for an adequated respiratory care in this particular population based on the updated literature referenced.
Resumo:
This study investigated the influence of two warm-up protocols on neural and contractile parameters of knee extensors. A series of neuromuscular tests including voluntary and electrically evoked contractions were performed before and after running- (R (WU); slow running, athletic drills, and sprints) and strength-based (S (WU); bilateral 90 degrees back squats, Olympic lifting movements and reactivity exercises) warm ups (duration ~40 min) in ten-trained subjects. The estimated overall mechanical work was comparable between protocols. Maximal voluntary contraction torque (+15.6%; P < 0.01 and +10.9%; P < 0.05) and muscle activation (+10.9 and +12.9%; P < 0.05) increased to the same extent after R (WU) and S (WU), respectively. Both protocols caused a significant shortening of time to contract (-12.8 and -11.8% after R (WU) and S (WU); P < 0.05), while the other twitch parameters did not change significantly. Running- and strength-based warm ups induce similar increase in knee extensors force-generating capacity by improving the muscle activation. Both protocols have similar effects on M-wave and isometric twitch characteristics.
Resumo:
Rats chronically cannulated in the carotid artery and the muscular branch of the femoral vein were subjected to a cold (4 °C) environment for up to 2 h. The changes in blood flow (measured with 46Sc microspheres) and arterio-venous differences in the concentrations of glucose, lactate, triacylglycerols and amino acids allowed the estimation of substrate (and energy) balances across the hindleg. Mean glucose uptake was 0.28mmol min21, mean lactate release was 0.33mmol min21 and the free fatty acid basal release of 0.31mmol min21 was practically zero upon exposure to the cold; the initial uptake of triacylglycerols gave place to a massive release following exposure. The measurement of PO·, PCO· and pH also allowed the estimation of oxygen, CO2 and bicarbonate balances and respiratory quotient changes across the hindleg. The contribution of amino acids to the energy balance of the hindleg was assumed to be low. These data were used to determine the sources of energy used to maintain muscle shivering with time. Three distinct phases were observed in hindleg substrate utilization. (1) The onset of shivering, with the use of glucose/glycogen and an increase in lactate efflux. Lipid oxidation was practically zero (respiratory quotient near 1), but the uptake of triacylglycerols from the blood remained unchanged. (2) A substrate-energy shift, with drastically decreased use of glucose/glycogen, and of lactate efflux; utilization of triacylglycerol as practically the sole source of energy (respiratory quotient approximately 0.7); decreasing uptake of triacylglycerol and increased tissue lipid mobilization. (3) The onset of a new heat-homeostasis setting for prolonged cold-exposure, with maintenance of muscle energy and heat production based on triacylglycerol utilization and efflux from the hindleg (muscle plus skin and subcutaneous adipose masses) contributing energy to help sustain heat production by the core organs and surrounding brown adipose tissue.
Resumo:
The aim of this study was to test the short-term effects of using hypoxic rooms before a simulated running event. Thirteen subjects (29 +/- 4 years) lived in a hypoxic dormitory (1,800 m) for either 2 nights (n = 6) or 2 days + nights (n = 7) before performing a 1,500-m treadmill test. Performance, expired gases, and muscle electrical activity were recorded and compared with a control session performed 1 week before or after the altitude session (random order). Arterial blood samples were collected before and after altitude exposure. Arterial pH and hemoglobin concentration increased (p < 0.05) and PCO2 decreased (p < 0.05) upon exiting the room. However, these parameters returned (p < 0.05) to basal levels within a few hours. During exercise, mean ventilation (VE) was higher (p < 0.05) after 2 nights or days + nights of moderate altitude exposure (113.0 +/- 27.2 L.min) than in the control run (108.6 +/- 27.8 L.min), without any modification in performance (360 +/- 45 vs. 360 +/- 42 seconds, respectively) or muscle electrical activity. This elevated VE during the run after the hypoxic exposure was probably because of the subsistence effects of the hypoxic ventilatory response. However, from a practical point of view, although the use of a normobaric simulating altitude chamber exposure induced some hematological adaptations, these disappeared within a few hours and failed to provide any benefit during the subsequent 1,500-m run.