982 resultados para Renal vascular conductance
Resumo:
Vasoactive agents were examined in arteries from control rats and rats exposed to intermittent hypoxia (10% oxygen; 8 h/day) for 3, 5 or 20 days. Hypoxic rats developed right ventricular hypertrophy after 5 days, but became pulmonary hypertensive (elevated right ventricular systolic pressure; RVSP) only after 20 days. In pulmonary arteries (main and intralobar), responses to acetylcholine and ionomycin (endothelium-dependent vasodilators) were reduced after 20 and 5 days of intermittent hypoxia, whereas contractions to 5-hydroxytryptamine (5-HT) were enhanced (potency increase >10-fold) after 20, 5 and 3 days. Contractions to endothelin-1 and a thromboxane-mimetic, but not Ca-2divided by, were also increased. No changes in vascular function occurred in aorta. Since changes in pulmonary vascular function preceded the increase in RVSP they do not result from, but may contribute to, the development of hypoxia-induced pulmonary hypertension. If similar changes occur in humans, they may be important in conditions characterised by intermittent, as opposed to continuous, hypoxia. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
PURPOSE: To determine the effects of aggressive lipid lowering on markers of ischemia, resistance vessel function, atherosclerotic burden, and Symptom status in patients with symptomatic coronary artery disease. METHODS: Sixty consecutive patients with coronary artery disease that was unsuitable for revascularization were assigned randomly to either usual therapy of lipids for patients with a low-density lipoprotein (LDL) cholesterol target level <116 mg/dL, or to a, more aggressive lipid-lowering strategy involving up to 80 mg/d of atorvastatin, with a target LDL cholesterol level <77 mg/dL. The extent and severity of inducible ischemia (by dobutamine echocardiography), vascular function.(brachial artery reactivity), atheroma burden (carotid intima-media thickness), and symptom status were evaluated blindly at baseline and after 12 weeks of treatment. RESULTS: After 12 weeks of treatment, patients in the aggressive therapy group had a significantly greater decrease in mean (+/- SD) LDL cholesterol level than those in the usual care group (29 +/- 38 mg/dL vs. 7 +/- 24 mg/dL, P = 0.03). Patients in the aggressive therapy group had a reduction in the number of ischemic wall segments (mean between-group difference of 1.3; 95% confidence interval: 0.1 to 2.0; P = 0.04), flow-mediated dilatation (mean between-group difference of 5.9%; 95% confidence interval: 2.5% to 9.4%; P = 0.001), and angina score after 12 weeks. There were no significant changes in atherosclerotic burden in either group. CONCLUSION: Patients with symptomatic coronary artery disease who are treated with aggressive lipid lowering have improvement of symptom status and ischemia that appears to reflect improved vascular function but not atheroma burden. Am J Med. 2003;114:445-453. (C) 2003 by Excerpta Medica Inc.
Resumo:
Control recommendations are presented for four genetic or familial diseases that cause significant morbidity and mortality in affected English Bull Terriers. Bull Terrier polycystic kidney disease is an autosomal dominant disease diagnosed by detecting a minimum of three renal cysts, with cysts present in both kidneys, and similarly affected family members to confirm the inherited nature of the cysts. Bull Terrier hereditary nephritis is an autosomal dominant disease diagnosed in otherwise normal animals with urinary protein: creatinine ratios persistently >0.3 and no significant urinary sediment, a family history of the disease, and characteristic glomerular basement membrane lesions. Mitral valve myxomatous degeneration and left ventricular outflow tract obstruction in Bull Terriers are familial diseases diagnosed by auscultating characteristic murmurs in affected animals. Excluding animals with these clinical signs from the breeding pool will reduce the prevalence rates of these diseases, however maintenance of an effective population size is also important. Providing breeders with information on genetics, including the risks associated with inbreeding and the benefits of outcrossing, is likely to improve canine breeding practices, thus increasing fitness and fecundity of these purebred dogs.
Resumo:
The impact of basal ganglia dysfunction on semantic processing was investigated by comparing the performance of individuals with nonthalamic subcortical (NS) vascular lesions, Parkinson's disease (PD), cortical lesions, and matched controls on a semantic priming task. Unequibiased lexical ambiguity primes were used in auditory prime-target pairs comprising 4 critical conditions; dominant related (e.g., bank-money), subordinate related (e.g., bank-river), dominant unrelated (e.g.,foot-money) and subordinate unrelated (e.g., bat-river). Participants made speeded lexical decisions (word/nonword) on targets using a go-no-go response. When a short prime-target interstimulus interval (ISI) of 200 ins was employed, all groups demonstrated priming for dominant and subordinate conditions, indicating nonselective meaning facilitation and intact automatic lexical processing. Differences emerged at the long ISI (1250 ms), where control and cortical lesion participants evidenced selective facilitation of the dominant meaning, whereas NS and PD groups demonstrated a protracted period of nonselective meaning facilitation. This finding suggests a circumscribed deficit in the selective attentional engagement of the semantic network on the basis of meaning frequency, possibly implicating a disturbance of frontal-subcortical systems influencing inhibitory semantic mechanisms.
Resumo:
Chronic lead exposure induces hypertension in humans and animals, affecting endothelial function. However, studies concerning acute cardiovascular effects are lacking. We investigated the effects of acute administration of a high concentration of lead acetate (100 µΜ) on the pressor response to phenylephrine (PHE) in the tail vascular bed of male Wistar rats. Animals were anesthetized with sodium pentobarbital and heparinized. The tail artery was dissected and cannulated for drug infusion and mean perfusion pressure measurements. Endothelium and vascular smooth muscle relaxation were tested with acetylcholine (5 µg/100 µL) and sodium nitroprusside (0.1 µg/100 µL), respectively, in arteries precontracted with 0.1 µM PHE. Concentration-response curves to PHE (0.001-300 µg/100 µL) were constructed before and after perfusion for 1 h with 100 µΜ lead acetate. In the presence of endothelium (E+), lead acetate increased maximal response (Emax) (control: 364.4 ± 36, Pb2+: 480.0 ± 27 mmHg; P < 0.05) and the sensitivity (pD2; control: 1.98 ± 0.07, 2.38 ± 0.14 log mM) to PHE. In the absence of endothelium (E-) lead had no effect but increased baseline perfusion pressure (E+: 79.5 ± 2.4, E-: 118 ± 2.2 mmHg; P < 0.05). To investigate the underlying mechanisms, this protocol was repeated after treatment with 100 µM L-NAME, 10 µM indomethacin and 1 µM tempol in the presence of lead. Lead actions on Emax and pD2 were abolished in the presence of indomethacin, and partially abolished with L-NAME and tempol. Results suggest that acute lead administration affects the endothelium, releasing cyclooxygenase-derived vasoconstrictors and involving reactive oxygen species.
Resumo:
Isolated segments of the perfused rat tail artery display a high basal tone when compared to other isolated arteries such as the mesenteric and are suitable for the assay of vasopressor agents. However, the perfusion of this artery in the entire tail has not yet been used for functional studies. The main purpose of the present study was to identify some aspects of the vascular reactivity of the rat tail vascular bed and validate this method to measure vascular reactivity. The tail severed from the body was perfused with Krebs solution containing different Ca2+ concentrations at different flow rates. Rats were anesthetized with sodium pentobarbital (65 mg/kg) and heparinized (500 U). The tail artery was dissected near the tail insertion, cannulated and perfused with Krebs solution plus 30 µM EDTA at 36oC and 2.5 ml/min and the procedures were started after equilibration of the perfusion pressure. In the first group a dose-response curve to phenylephrine (PE) (0.5, 1, 2 and 5 µg, bolus injection) was obtained at different flow rates (1.5, 2.5 and 3.5 ml/min). The mean perfusion pressure increased with flow as well as PE vasopressor responses. In a second group the flow was changed (1.5, 2, 2.5, 3 and 3.5 ml/min) at different Ca2+ concentrations (0.62, 1.25, 2.5 and 3.75 mM) in the Krebs solution. Increasing Ca2+ concentrations did not alter the flow-pressure relationship. In the third group a similar protocol was performed but the rat tail vascular bed was perfused with Krebs solution containing PE (0.1 µg/ml). There was an enhancement of the effect of PE with increasing external Ca2+ and flow. PE vasopressor responses increased after endothelial damage with air and CHAPS, suggesting an endothelial modulation of the tone of the rat tail vascular bed. These experiments validate the perfusion of the rat tail vascular bed as a method to investigate vascular reactivity.
Resumo:
Ouabain is an endogenous substance occurring in the plasma in the nanomolar range, that has been proposed to increase vascular resistance and induce hypertension. This substance acts on the a-subunit of Na+,K+-ATPase inhibiting the Na+-pump activity. In the vascular smooth muscle this effect leads to intracellular Na+ accumulation that reduces the activity of the Na+/Ca2+ exchanger and to an increased vascular tone. It was also suggested that circulating ouabain, even in the nanomolar range, sensitizes the vascular smooth muscle to vasopressor substances. We tested the latter hypothesis by studying the effects of ouabain in the micromolar and nanomolar range on phenylephrine (PE)-evoked pressor responses. The experiments were performed in normotensive and hypertensive rats in vivo, under anesthesia, and in perfused rat tail vascular beds. The results showed that ouabain pretreatment increased the vasopressor responses to PE in vitro and in vivo. This sensitization after ouabain treatment was also observed in hypertensive animals which presented an enhanced vasopressor response to PE in comparison to normotensive animals. It is suggested that ouabain at nanomolar concentrations can sensitize vascular smooth muscle to vasopressor stimuli possibly contributing to increased tone in hypertension.
Resumo:
Obstructive apnea (OA) can exert significant effects on renal sympathetic nerve activity (RSNA) and hemodynamic parameters. The present study focuses on the modulatory actions of RSNA on OA-induced sodium and water retention. The experiments were performed in renal-denervated rats (D; N = 9), which were compared to sham (S; N = 9) rats. Mean arterial pressure (MAP) and heart rate (HR) were assessed via an intrafemoral catheter. A catheter was inserted into the bladder for urinary measurements. OA episodes were induced via occlusion of the catheter inserted into the trachea. After an equilibration period, OA was induced for 20 s every 2 min and the changes in urine, MAP, HR and RSNA were recorded. Renal denervation did not alter resting MAP (S: 113 ± 4 vs D: 115 ± 4 mmHg) or HR (S: 340 ± 12 vs D: 368 ± 11 bpm). An OA episode resulted in decreased HR and MAP in both groups, but D rats showed exacerbated hypotension and attenuated bradycardia (S: -12 ± 1 mmHg and -16 ± 2 bpm vs D: -16 ± 1 mmHg and 9 ± 2 bpm; P < 0.01). The basal urinary parameters did not change during or after OA in S rats. However, D rats showed significant increases both during and after OA. Renal sympathetic nerve activity in S rats increased (34 ± 9%) during apnea episodes. These results indicate that renal denervation induces elevations of sodium content and urine volume and alters bradycardia and hypotension patterns during total OA in unconscious rats.
Resumo:
Cardiac hypertrophy that accompanies hypertension seems to be a phenomenon of multifactorial origin whose development does not seem to depend on an increased pressure load alone, but also on local growth factors and cardioadrenergic activity. The aim of the present study was to determine if sympathetic renal denervation and its effects on arterial pressure level can prevent cardiac hypertrophy and if it can also delay the onset and attenuate the severity of deoxycorticosterone acetate (DOCA)-salt hypertension. DOCA-salt treatment was initiated in rats seven days after uninephrectomy and contralateral renal denervation or sham renal denervation. DOCA (15 mg/kg, sc) or vehicle (soybean oil, 0.25 ml per animal) was administered twice a week for two weeks. Rats treated with DOCA or vehicle (control) were provided drinking water containing 1% NaCl and 0.03% KCl. At the end of the treatment period, mean arterial pressure (MAP) and heart rate measurements were made in conscious animals. Under ether anesthesia, the heart was removed and the right and left ventricles (including the septum) were separated and weighed. DOCA-salt treatment produced a significant increase in left ventricular weight/body weight (LVW/BW) ratio (2.44 ± 0.09 mg/g) and right ventricular weight/body weight (RVW/BW) ratio (0.53 ± 0.01 mg/g) compared to control (1.92 ± 0.04 and 0.48 ± 0.01 mg/g, respectively) rats. MAP was significantly higher (39%) in DOCA-salt rats. Renal denervation prevented (P>0.05) the development of hypertension in DOCA-salt rats but did not prevent the increase in LVW/BW (2.27 ± 0.03 mg/g) and RVW/BW (0.52 ± 0.01 mg/g). We have shown that the increase in arterial pressure level is not responsible for cardiac hypertrophy, which may be more related to other events associated with DOCA-salt hypertension, such as an increase in cardiac sympathetic activity.