996 resultados para Red Lists


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A detailed investigation on the adsorption behavior of Neutral Red (NR) molecules on mercaptoethane sulfonate-monolayer protected gold clusters (MES-MPCs) has been conducted by the spectroscopic method. It is found that cationic NR molecules are adsorbed on the negatively charged MPCs surfaces via electrostatic attractive forces. The absorption study shows that the optical properties of NR molecules are significantly influenced upon the adsorption. Based on the electrostatic adsorption nature and the excellent stability of MES-MPCs against the electrolytes, this association can be released by the addition of electrolyte salts, which can be monitored by both absorption and fluorescence spectroscopy. In addition, dication Ca2+ is found to be more effective in the release of NR than univalent Na+. Moreover, the MES-MPCs exert energy transfer quenching of NR fluorescence by both static and dynamic quenching. However, static quenching seems to be the dominating quenching mechanism. Furthermore, this energy transfer quenching exhibits strong dependence of Au core size, and 5.0 nm MPCs show stronger ability in quenching the NR fluorescence than that of 2.7 nm MPCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate red organic light-emitting diodes (OLEDs) with improved color purity and electroluminescence (EL) efficiency by codoping a green fluorescent sensitizer 10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1, 1, 7,7-tetramethyl-1H, 5H, 11H-(1)-benzopyropyrano(6,7-8-ij)quinolizin-11-one (C545T) as the second dopant and a red fluorescent dye 4-(dicyanomethylene)-2-t-butyl-6(1,1,7,7tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) as the lumophore into tris(8-hydroquinoline) aluminum (Alq(3)) host. It was found that the C545 T dopant did not by itself emit but assisted the carrier trapping from the host Alq(3) to the red emitting dopant. The red OLEDs realized by this approach not only kept the purity of the emission color, but also significantly improved the EL efficiency. The current efficiency and power efficiency, respectively, reached 12 cd/A at a current density of 0.3 mA/cm(2) and 10lm/W at a current density of 0.02 mA/cm(2), which are enhanced by 1.4 and 2.6 times compared with devices where the emissive layer is composed of the DCJTB doped Alq(3), and a stable red emission (chromaticity coordinates: x = 0.64, y = 0.36) was obtained in a wide range of voltage. Our results indicate that the coguest system is a promising method for obtaining high-efficiency red OLEDs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amplified spontaneous emission (ASE) characteristics of a red fluorescent dye, 4-(dicy-anomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB), and a green fluorescent dye, (10-(2-benzothiazolyl)-1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H,5H,11H-[1] benzopyrano [6,7,8-ij]quinohzin-11-one) (C545T) codoped polystyrene (PS) as the active medium were studied. It was found that the performance of ASE is greatly improved due to the introduction of C545T. By optimizing the concentrations of C545T and DCJTB in PS, an ASE threshold of 0.016 mJ pulse(-1), net gain of 52.71 cm(-1), and loss of 11.7 cm(-1) were obtained. The efficient Forster energy transfer from C545T to DCJTB was used to explain the improvement of the ASE performance in the coguest system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pure red organic light-emitting diodes based on a dinuclear europium complex with a structure of (TTA)(3)Eu(PYO)(2)Eu(TTA)3 (TTA = thenoyltrifluoroacetonate, PYO = pyridine N-oxide) were presented. The devices showed pure red emission at a peak wavelength of 612 nm with a full width at half maximum of 3 nm, which is a characteristic emission from Eu3+ ion based on D-5(0) -> F-7(2) transition. The maximum brightness and electroluminescent (EL) efficiency reached 340 cd/m(2) at a driving voltage of 19 V and 2.4 cd/A (0.78 lm/W) at a current density of 0.14 mA/cm(2), respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A highly efficient white electroluminescent polymer with simultaneous blue, green, and red emission is reported, developed using a dopant/host strategy by covalently attaching both a green- and a red-light-emitting dopant to the side chain of a blue-light-emitting polymer host (see figure). In a single-layer device a maximum luminance efficiency of 7.3 cd A(-1) with CIE coordinates of (0.31,0.32) is achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-efficiency white electrolurninescence from a single polymer is achieved by enhancing the electroluminescence efficiency and effecting a red-shift in the emission spectrum of the blue emissive species. A single-layer device of the resultant polymer exhibits a higher luminous efficiency than the nonmodified species (12.8 cd A(-1), see figure) and an external quantum efficiency of 5.4 % with CIE coordinates of (0.31,0.36), exemplifying the success of the reported methodology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A white electroluminescent single polymer system with both high electroluminescence efficiency and excellent color rendering index (CRI) value is developed by covalently attaching blue, green, and red dopant units as individual light-emitting species to the side chain of polyfluorene as individual polymer host. A luminous efficiency of 8.6 cd A(-1), CIE coordinates of (0.33, 0.36) and CRI value of 88 was demonstrated with their single-layer devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors report a random lasing emission from 4-(dicy-anomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran doped polystyrene thin films by introducing polystyrene nanoparticles. The aspects of concentration and diameter of polystyrene nanoparticles have been intensively investigated and found that the lasing occurs due to the scattering role of polystyrene nanoparticles. The devices emit a resonance multimode peak centered at a wavelength of 630 nm with a mode linewidth of less than 0.35 nm and exhibit threshold excitation intensity of as low as 0.06 mJ pulse(-1) cm(-2). The microscopic laser cavities formed by multiple scattering have been captured. The demonstration of random laser opens up the possibility of using organic scattering as alternative sources of coherent light emission.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By doping a fluorescent dye in the emissive layer, we realized high efficient red organic light-emitting diodes (OLEDs) based on a europium complex. The OLEDs realized by this method showed pure red emission at 612 nm with a full width at half maximum Of 3 nm. The Commission International de L'Eclairage Coordination keeps approximately the same as the emission of pure Eu3+. The maximum brightness and EL efficiency reached 2450 cd/m(2) at 20 V and 9.0 cd/A (6.0 lm/w) at a current density of 0.012 mA/cm(2), respectively. At the brightness of 100 cd/m(2), the current efficiency reached 4.4 cd/A.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A conjugated poly(p-CN-phenylenevinylene) (PCNPV) containing both electron-donating triphenylamine units and electron-withdrawing cyano groups was prepared via Knoevenagel condensation in a good yield. Gel permeation chromatography suggested that the soluble polymer had a very high weight-average molecular weight of 309,000. A bright and saturated red emission was observed under UV excitation in solution and film. Cyclic voltammetry showed that the polymer presented quasi-reversible oxidation with a relatively low potential because of the triphenylamine unit. A single-layer indium tin oxide/PCNPV/Mg-Ag device emitted a bright red light (633 nm).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of novel iridium(III) complexes with two 2-arylquinoline derivatives as cyclometalated ligands and one monoanionic ligand, such as acetylacetonate (acac), N,N'-diethyldithiocarbamate (Et(2)dtc) and O,O'-diethyldithiophosphate (Et(2)dtp), as ancillary ligands have been synthesized and structurally characterized by H-1 NMR, MS and elemental analysis (EA). The cyclic voltammetry, absorption, emission and electroluminescence properties of these complexes were systematically investigated. Through extending pi-conjugation, introducing electron-donating groups in the ligand frame, or changing the ancillary ligands, the HOMO energy levels of the iridium(III) complexes can be tuned, while their LUMO levels remain little affected; in consequence, the emission wavelengths of the iridium(III) complexes can be tuned in the range 606-653 nm. The highly efficient organic light-emitting diodes (OLEDs) with saturated red emission have been demonstrated. A maximum current efficiency of 10.79 cd A(-1), at a current density of 0.74 mA cm(-2), with an emission wavelength of 616 nm and Commisioon Internationale de L'Eclairage (CIE) coordinates of (0.65, 0.35), which are very close to the National Television System Comittee (NSTC) standard red emission, have been achieved when using complex (DPQ)(2)Ir(acac) as a phosphor dopant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the binding of neutral red (NR) to bovine serum albumin (BSA) under physiological conditions has been studied by spectroscopy method including fluorescence, circular dichroism (CD) and Fourier transform infrared (FT-IR) spectroscopy. The Stern-Volmer fluorescence quenching constant (K-SV), binding constant (K-b) and the number of binding sites (It) were measured by fluorescence quenching method. Fluorescence experiments were also performed at different ionic strengths. It was found K-SV was ionic strength dependent, which indicated the electrostatic interactions were part of the binding forces. The distance r between donor (BSA) and acceptor (NR) was obtained according to Foster's non-radiative energy transfer theory. CD spectroscopy and FT-IR spectroscopy were used to investigate the structural information of BSA molecules on the binding of NR, and the results showed no change of BSA conformation in our experimental conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

HigWy efficient DCJTB-doped device was realized by enhanced electron injection and exciton confinement. A fluorine end-capped linear phenylene/oxadiazole oligomer 2,5-bis(4-fluorobiphenyl-4'-yl)-1,3,4-oxadiazole (1) and a trifluoromethyl end-capped oligomer 2,5-bis(4-trifluoromethylbiphenyl-4'-yl)-1,3,4-oxadiazole (2) were designed and incorporated as an electron transporting/hole blocking material in the device structure ITO/NPB (60 mn)/DCJTB:Alq(3) (0.5%, 10 nm)/1 or 2 (20 nm)/Alq(3) (30 mn)/LiF (1 nm)/Al (100 nm). The devices showed highly efficient red luminescence. In particular, the device based on 1 achieved pure red luminescence at 620 run originating from DCJTB, with a narrow FWHI of 65 nm, maximal brightness of 13,300 cd/m(2) at voltage of 20.8 V and current density of ca. 355 mA/cm(2). High current and power efficiencies (> 3.6 cd/A. 1.01m/W) were retained within a wide range of current densities. Our results show efficient and stable DCJTB-doped red electroluminescence could be anticipated for practical applications by taking advantage of the present approaches. The control experiments using BCP were also studied.