843 resultados para Receiver operating characterictics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study was aimed at evaluating the mechanical and pH-dependent leaching performance of a mixed contaminated soil treated with a mixture of Portland cement (CEMI) and pulverised fuel ash (PFA). It also sought to develop operating envelopes, which define the range(s) of operating variables that result in acceptable performance. A real site soil with low contaminant concentrations, spiked with 3000mg/kg each of Cd, Cu, Pb, Ni and Zn, and 10,000mg/kg of diesel, was treated with one part CEMI and four parts PFA (CEMI:PFA=1:4) using different binder and water contents. The performance was assessed over time using unconfined compressive strength (UCS), hydraulic conductivity, acid neutralisation capacity (ANC) and pH-dependent leachability of contaminants. With binder dosages ranging from 5% to 20% and water contents ranging from 14% to 21% dry weight, the 28-day UCS was up to 500kPa and hydraulic conductivity was around 10-8m/s. With leachant pH extremes of 7.2 and 0.85, leachability of the contaminants was in the range: 0.02-3500mg/kg for Cd, 0.35-1550mg/kg for Cu, 0.03-92mg/kg for Pb, 0.01-3300mg/kg for Ni, 0.02-4010mg/kg for Zn, and 7-4884mg/kg for total petroleum hydrocarbons (TPHs), over time. Design charts were produced from the results of the study, which show the water and/or binder proportions that could be used to achieve relevant performance criteria. The charts would be useful for the scale-up and design of stabilisation/solidification (S/S) treatment of similar soil types impacted with the same types of contaminants. © 2013 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A one-dimensional model for crevice HC post-flame oxidation is used to calculate and understand the effect of operating parameters and fuel type (propane and isooctane) on the extent of crevice hydrocarbon and the product distribution in the post flame environment. The calculations show that the main parameters controlling oxidation are: bulk burned gas temperatures, wall temperatures, turbulent diffusivity, and fuel oxidation rates. Calculated extents of oxidation agree well with experimental values, and the sensitivities to operating conditions (wall temperatures, equivalence ratio, fuel type) are reasonably well captured. Whereas the bulk gas temperatures largely determine the extent of oxidation, the hydrocarbon product distribution is not very much affected by the burned gas temperatures, but mostly by diffusion rates. Uncertainties in both turbulent diffusion rates as well as in mechanisms are an important factor limiting the predictive capabilities of the model. However, it seems well suited to sensitivity calculations about a baseline. Copyright © 1999 Society of Automotive Engineers, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several options of fuel assembly design are investigated for a BWR core operating in a closed self-sustainable Th-233U fuel cycle. The designs rely on an axially heterogeneous fuel assembly structure consisting of a single axial fissile zone "sandwiched" between two fertile blanket zones, in order to improve fertile to fissile conversion ratio. The main objective of the study was to identify the most promising assembly design parameters, dimensions of fissile and fertile zones, for achieving net breeding of 233U. The design challenge, in this respect, is that the fuel breeding potential is at odds with axial power peaking and the core minimum critical power ratio (CPR), hence limiting the maximum achievable core power rating. Calculations were performed with the BGCore system, which consists of the MCNP code coupled with fuel depletion and thermo-hydraulic feedback modules. A single 3-dimensional fuel assembly having reflective radial boundaries was modeled applying simplified restrictions on the maximum centerline fuel temperature and the CPR. It was found that axially heterogeneous fuel assembly design with a single fissile zone can potentially achieve net breeding, while matching conventional BWR core power rating under certain restrictions to the core loading pattern design. © 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The viability of Boundary Layer Ingesting (BLI) engines for future aircraft propulsion is dependent on the ability to design robust, efficient engine fan systems for operation with continuously distorted inlet flow. A key step in this process is to develop an understanding of the specific mechanisms by which an inlet distortion affects the performance of a fan stage. In this paper, detailed full-annulus experimental measurements of the flow field within a low-speed fan stage operating with a continuous 60-degree inlet stagnation pressure distortion are presented. These results are used to describe the three-dimensional fluid mechanics governing the interaction between the fan and the distortion and to make a quantitative assessment of the impact on loss generation within the fan. A 5.3 percentage point reduction in stage total-to-total efficiency is observed as a result of the inlet distortion. The reduction in performance is shown to be dominated by increased loss generation in the rotor due to off-design incidence values at its leading edge, an effect which occurs throughout the annulus despite the localised nature of the inlet distortion. Increased loss generation in the stator row is also observed due to flow separations that are shown to be caused by whirl angle distortion at rotor exit. By addressing these losses, it should be possible to achieve improved efficiency in BLI fan systems. Copyright © 2012 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate an uncooled WDM system using standard WDM components and receiver signal processing, with a different number of receivers to transmitters, to allow wide temperature drift of the transmitter lasers. A 100 Gb/s 8-wavelength demonstrator has been developed, which proves the feasibility of the approach over 25 km of SMF. © 2012 OSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The viability of boundary layer ingesting (BLI) engines for future aircraft propulsion is dependent on the ability to design robust, efficient engine fan systems for operation with continuously distorted inlet flow. A key step in this process is to develop an understanding of the specific mechanisms by which an inlet distortion affects the performance of a fan stage. In this paper, detailed full-annulus experimental measurements of the flow field within a low-speed fan stage operating with a continuous 60 deg inlet stagnation pressure distortion are presented. These results are used to describe the three-dimensional fluid mechanics governing the interaction between the fan and the distortion and to make a quantitative assessment of the impact on loss generation within the fan. A 5.3 percentage point reduction in stage total-to-total efficiency is observed as a result of the inlet distortion. The reduction in performance is shown to be dominated by increased loss generation in the rotor due to off-design incidence values at its leading edge, an effect that occurs throughout the annulus despite the localized nature of the inlet distortion. Increased loss in the stator row is also observed due to flow separations that are shown to be caused by whirl angle distortion at rotor exit. By addressing these losses, it should be possible to achieve improved efficiency in BLI fan systems. © 2013 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate an uncooled WDM system using standard WDM components and receiver signal processing, with a different number of receivers to transmitters, to allow wide temperature drift of the transmitter lasers. A 100 Gb/s 8-wavelength demonstrator has been developed, which proves the feasibility of the approach over 25 km of SMF. © 2012 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work initiated the development of operating envelopes for stabilised/solidified contaminated soils. The operating envelopes define the range of operating variables for acceptable performance of the treated soils. The study employed a soil spiked with 3,000 mg/kg each of Cd, Cu, Pb, Ni and Zn, and 10,000 mg/kg of diesel. The binders used for treatment involved Portland cement (CEMI), pulverised fuel ash (PFA), ground granulated blast furnace slag (GGBS) and hydrated lime (hlime). The specific binder formulations were CEMI, CEMI/PFA = 1:4, CEMI/GGBS = 1:9 and hlime/GGBS = 1:4. The water contents employed ranged from 13 % to 21 % (dry weight), while binder dosages ranged from 5 % to 20 % (w/w). We monitored the stabilised/solidified soils for up to 84 days using different performance tests. The tests include unconfined compressive strength (UCS), hydraulic conductivity, acid neutralisation capacity (ANC) and pH-dependent leachability of contaminants. The water content range resulted in adequate workability of the mixes but had no significant effect on leachability of contaminants. We produced design charts, representing operating envelopes, from the results generated. The charts establish relationships between water content, binder dosage and UCS; and binder dosage, leachant pH and leachability of contaminants. The work also highlights the strengths and weaknesses of the different binder formulations. © 2013 Springer-Verlag Berlin Heidelberg.