933 resultados para Reactive currents
Resumo:
Protein Misfolding Disorders (PMDs) are a group of diseases characterized by the accumulation of abnormally folded proteins. Despite the wide range of proteins and tissues involved, PMDs share similar molecular and pathogenic mechanisms. Several epidemiological, clinical and experimental reports have described the co-existence of PMDs, suggesting a possible cross-talk between them. A better knowledge of the molecular basis of PMDs could have important implications for understanding the mechanism by which these diseases appear and progress and ultimately to develop novel strategies for treatment. Due to their similar molecular mechanisms, common therapeutic strategies could be applied for the diseases in this group.
Resumo:
C-Reactive Protein (CRP) is a biomarker indicating tissue damage, inflammation, and infection. High-sensitivity CRP (hsCRP) is an emerging biomarker often used to estimate an individual’s risk for future coronary heart disease (CHD). hsCRP levels falling below 1.00 mg/l indicate a low risk for developing CHD, levels ranging between 1.00 mg/l and 3.00 mg/l indicate an elevated risk, and levels exceeding 3.00 mg/l indicate high risk. Multiple Genome-Wide Association Studies (GWAS) have identified a number of genetic polymorphisms which influence CRP levels. SNPs implicated in such studies have been found in or near genes of interest including: CRP, APOE, APOC, IL-6, HNF1A, LEPR, and GCKR. A strong positive correlation has also been found to exist between CRP levels and BMI, a known risk factor for CHD and a state of chronic inflammation. We conducted a series of analyses designed to identify loci which interact with BMI to influence CRP levels in a subsample of European-Americans in the ARIC cohort. In a stratified GWA analysis, 15 genetic regions were identified as having significantly (p-value < 2.00*10-3) distinct effects on hsCRP levels between the two obesity strata: lean (18.50 kg/m2 < BMI < 24.99 kg/m2) and obese (BMI ≥ 30.00 kg/m2). A GWA analysis performed on all individuals combined (i.e. not a priori stratified for obesity status) with the inclusion of an additional parameter for BMI by gene interaction, identified 11 regions which interact with BMI to influence hsCRP levels. Two regions containing the genes GJA5 and GJA8 (on chromosome 1) and FBXO11 (on chromosome 2) were identified in both methods of analysis suggesting that these genes possibly interact with BMI to influence hsCRP levels. We speculate that atrial fibrillation (AF), age-related cataracts and the TGF-β pathway may be the biological processes influenced by the interaction of GJA5, GJA8 and FBXO11, respectively, with BMI to cause changes in hsCRP levels. Future studies should focus on the influence of gene x bmi interaction on AF, age-related cataracts and TGF-β.
Resumo:
Viral invasion of the central nervous system (CNS) and development of neurological symptoms is a characteristic of many retroviruses. The mechanism by which retrovirus infection causes neurological dysfunction has yet to be fully elucidated. Given the complexity of the retrovirus-mediated neuropathogenesis, studies using small animal models are extremely valuable. Our laboratory has used a mutant moloney murine leukemia retrovirus, ts1-mediated neurodegneration. We hypothesize that astrocytes play an important role in ts1-induced neurodegeneration since they are retroviral reservoirs and supporting cells for neurons. It has been shown that ts1 is able to infect astrocytes in vivo and in vitro. Astrocytes, the dominant cell population in the CNS, extend their end feet to endothelial cells and neuronal synapse to provide neuronal support. Signs of oxidative stress in the ts1-infected CNS have been well-documented from previous studies. After viral infection, retroviral DNA is generated from its RNA genome and integrated into the host genome. In this study, we identified the life cycle of ts1 in the infected astrocytes. During the infection, we observed reactive oxygen species (ROS) upregulations: one at low levels during the early infection phase and another at high levels during the late infection phase. Initially we hypothesized that p53 might play an important role in ts1-mediated astrocytic cell death. Subsequently, we found that p53 is unlikely to be involved in the ts1-mediated astrocytic cell death. Instead, p53 phosphorylation was increased by the early ROS upregulation via ATM, the protein encoded by the ataxia-telangiectasia (A-T) mutated gene. The early upregulation of p53 delayed viral gene expression by suppressing expression of the catalytic subunit of NADPH oxidase (NOX). We further demonstrated that the ROS upregulation induced by NOX activation plays an important role in establishing retroviral genome into the host. Inhibition of NOX decreased viral replication and delayed the onset of pathological symptoms in ts1-infected mice. These observations lead us to conclude that suppression of NOX not only prevents the establishment of the retrovirus but also decreases oxidative stress in the CNS. This study provides us with new perspectives on the retrovirus-host cell interaction and sheds light on retrovirus-induced neurodegeneration as a result of the astrocyte-neuron interaction.
Resumo:
Phosphorus (P) is an essential macronutrient for all living organisms. Phosphorus is often present in nature as the soluble phosphate ion PO43– and has biological, terrestrial, and marine emission sources. Thus PO43– detected in ice cores has the potential to be an important tracer for biological activity in the past. In this study a continuous and highly sensitive absorption method for detection of dissolved reactive phosphorus (DRP) in ice cores has been developed using a molybdate reagent and a 2-m liquid waveguide capillary cell (LWCC). DRP is the soluble form of the nutrient phosphorus, which reacts with molybdate. The method was optimized to meet the low concentrations of DRP in Greenland ice, with a depth resolution of approximately 2 cm and an analytical uncertainty of 1.1 nM (0.1 ppb) PO43–. The method has been applied to segments of a shallow firn core from Northeast Greenland, indicating a mean concentration level of 2.74 nM (0.26 ppb) PO43– for the period 1930–2005 with a standard deviation of 1.37 nM (0.13 ppb) PO43– and values reaching as high as 10.52 nM (1 ppb) PO43–. Similar levels were detected for the period 1771–1823. Based on impurity abundances, dust and biogenic particles were found to be the most likely sources of DRP deposited in Northeast Greenland.
Resumo:
Reactive and noble gases dissolved in matrix pore water of low permeable crystalline bedrock were successfully extracted and characterized for the fist time based on drillcore samples from the Olkiluoto investigation site (SW Finland). Interaction between matrix pore water and fracture groundwater occurs predominately by diffusion. Changes in the chemical and isotopic composition of gases dissolved in fracture groundwater are transmitted and preserved in the pore water. Absolute concentrations, their ratios and the stable carbon isotope signature of hydrocarbon gases dissolved in pore water give valuable indications about the evolution of these gases in the nearby-flowing fracture groundwaters. Inert noble gases dissolved in matrix pore water and their isotopes combined with their in-situ production and accumulation rates deliver information about the residence time of pore water.
Resumo:
BACKGROUND/OBJECTIVES High intake of added sweeteners is considered to have a causal role in the pathogenesis of cardiometabolic disorders. Especially, high-fructose intake is regarded as potentially harmful to cardiometabolic health. It may cause not only weight gain but also low-grade inflammation, which represents an independent risk factor for developing type 2 diabetes and cardiovascular disease. In particular, fructose has been suggested to induce plasminogen activator inhibitor-1 (PAI-1) expression in the liver and to increase circulating inflammatory cytokines. We therefore aimed to investigate, whether high-fructose diet has an impact on PAI-1, monocyte chemoattractant protein-1 (MCP-1), e-selectin and C-reactive protein (CRP) concentrations in healthy humans. SUBJECTS/METHODS We studied 20 participants (12 males and 8 females) of the TUebingen FRuctose Or Glucose study. This is an exploratory, parallel, prospective, randomized, single-blinded, outpatient, hypercaloric, intervention study. The participants had a mean age of 30.9 ± 2.1 years and a mean body mass index of 26.0 ± 0.5 kg/m(2) and they received 150 g of either fructose or glucose per day for 4 weeks.Results:There were neither significant changes of PAI-1, MCP-1, e-selectin and CRP after fructose (n=10) and glucose (n=10) intervention nor treatment effects (all P>0.2). Moreover, we did not observe longitudinal associations of the inflammatory parameters with triglycerides, liver fat, visceral fat and body weight in the fructose group. CONCLUSIONS Temporary high-fructose intake does not seem to cause inflammation in apparently healthy people in this secondary analysis of a small feeding trial.
Resumo:
Reactive oxygen intermediates (ROI) contribute to neuronal injury in cerebral ischemia and trauma. In this study we explored the role of ROI in bacterial meningitis. Meningitis caused by group B streptococci in infant rats led to two distinct forms of neuronal injury, areas of necrosis in the cortex and neuronal loss in the dentate gyrus of the hippocampus, the latter showing evidence for apoptosis. Staining of brain sections with diaminobenzidine after perfusion with manganese buffer and measurement of lipid peroxidation products in brain homogenates both provided evidence that meningitis led to the generation of ROI. Treatment with the radical scavenger alpha-phenyl-tert-butyl nitrone (PBN) (100 mg/kg q8h i.p.) beginning at the time of infection completely abolished ROI detection and the increase in lipidperoxidation. Cerebral cortical perfusion was reduced in animals with meningitis to 37.5+/-21.0% of uninfected controls (P < 0.05), and PBN restored cortical perfusion to 72.0+/-8.1% of controls (P < 0.05 vs meningitis). PBN also completely prevented neuronal injury in the cortex and hippocampus, when started at the time of infection (P < 0.02), and significantly reduced both forms of injury, when started 18 h after infection together with antibiotics (P < 0.004 for cortex and P < 0.001 for hippocampus). These data indicate that the generation of ROI is a major contributor to cerebral ischemia and necrotic and apoptotic neuronal injury in this model of neonatal meningitis.
Resumo:
AIMS Heart failure with preserved ejection fraction (HFpEF) has a different pathophysiological background compared to heart failure with reduced ejection fraction (HFrEF). Tailored risk prediction in this separate heart failure group with a high mortality rate is of major importance. Inflammation may play an important role in the pathogenesis of HFpEF because of its significant contribution to myocardial fibrosis. We therefore aimed to assess the predictive value of C-reactive protein (CRP) in patients with HFpEF. METHODS AND RESULTS Plasma levels of CRP were determined in 459 patients with HFpEF in the LUdwigshafen Risk and Cardiovascular Health (LURIC) study using a high-sensitivity assay. During a median follow-up of 9.7 years 40% of these patients died. CRP predicted all-cause mortality with an adjusted hazard ratio (HR) of 1.20 [95% confidence interval (CI) 1.02-1.40, P = 0.018] and cardiovascular mortality with a HR of 1.32 (95% CI 1.08-1.62, P = 0.005) per increase of one standard deviation. CRP was a significantly stronger mortality predictor in HFpEF patients than in a control group of 522 HFrEF patients (for interaction, P = 0.015). Furthermore, CRP added prognostic value to N-terminal pro B-type natriuretic peptide (Nt-proBNP): the lowest 5-year mortality rate of 6.8% was observed for patients in the lowest tertile of Nt-proBNP as well as CRP. The mortality risk peaked in the group combining the highest values of Nt-proBNP and CRP with a 5-year rate of 36.5%. CONCLUSION It was found that CRP was an independent and strong predictor of mortality in HFpEF. This observation may reflect immunological processes with an adverse impact on the course of HFpEF.
Resumo:
For a three-dimensional vertically-oriented fault zone, we consider the coupled effects of fluid flow, heat transfer and reactive mass transport, to investigate the patterns of fluid flow, temperature distribution, mineral alteration and chemically induced porosity changes. We show, analytically and numerically, that finger-like convection patterns can arise in a vertically-oriented fault zone. The onset and patterns of convective fluid flow are controlled by the Rayleigh number which is a function of the thermal properties of the fluid and the rock, the vertical temperature gradient, and the height and the permeability of the fault zone. Vigorous fluid flow causes low temperature gradients over a large region of the fault zone. In such a case, flow across lithological interfaces becomes the most important mechanism for the formation of sharp chemical reaction fronts. The degree of rock buffering, the extent and intensity of alteration, the alteration mineralogy and in some cases the formation of ore deposits are controlled by the magnitude of the flow velocity across these compositional interfaces in the rock. This indicates that alteration patterns along compositional boundaries in the rock may provide some insights into the convection pattern. The advective mass and heat exchanges between the fault zone and the wallrock depend on the permeability contrast between the fault zone and the wallrock. A high permeability contrast promotes focussed convective flow within the fault zone and diffusive exchange of heat and chemical reactants between the fault zone and the wallrock. However, a more gradual permeability change may lead to a regional-scale convective flow system where the flow pattern in the fault affects large-scale fluid flow, mass transport and chemical alteration in the wallrocks
Resumo:
Diagnosis of osteoarthritis (OA) is based upon the clinical orthopaedic examination and the radiographic assessment, both of which can be non-specific and insensitive in early joint disease. The aim of our study was to investigate if there is an increase in serum levels of C-reactive protein (CRP) in degenerative joint disease (DJD) and if CRP could be used to help diagnose OA. We also wished to investigate whether it was possible to distinguish a joint with clinically and radiographically confirmed OA from a healthy joint by comparing lactate dehydrogenase (LDH) levels within the synovial fluid and the serum. We have shown a difference in synovial LDH levels between diseased and healthy joints (P<0.0001). There was also a significant difference between LDH in arthritic synovial fluid and serum, with no correlation between the values. Despite the fact that the values of our clinical patients tended to be higher than the values of our control group (P=0.05) all measured values were within the normal limits of previous publications. From these data, we conclude that single measurements of serum CRP do not permit detection of OA in clinical patients and that serum LDH is not a reliable marker for osteoarthritis. LDH levels in the synovial fluid could be of diagnostic value for identifying osteoarthritis.
Resumo:
(J. H. Hertz)
Resumo:
BACKGROUND Membrane-associated guanylate kinase (MAGUK) proteins are important determinants of ion channel organization in the plasma membrane. In the heart, the MAGUK protein SAP97, encoded by the DLG1 gene, interacts with several ion channels via their PDZ domain-binding motif and regulates their function and localization. OBJECTIVE The purpose of this study was to assess in vivo the role of SAP97 in the heart by generating a genetically modified mouse model in which SAP97 is suppressed exclusively in cardiomyocytes. METHODS SAP97(fl/fl) mice were generated by inserting loxP sequences flanking exons 1-3 of the SAP97 gene. SAP97(fl/fl) mice were crossed with αMHC-Cre mice to generate αMHC-Cre/SAP97(fl/fl) mice, thus resulting in a cardiomyocyte-specific deletion of SAP97. Quantitative reverse transcriptase-polymerase chain reaction, western blots, and immunostaining were performed to measure mRNA and protein expression levels, and ion channel localization. The patch-clamp technique was used to record ion currents and action potentials. Echocardiography and surface ECGs were performed on anesthetized mice. RESULTS Action potential duration was greatly prolonged in αMHC-Cre/SAP97(fl/fl) cardiomyocytes compared to SAP97(fl/fl) controls, but maximal upstroke velocity was unchanged. This was consistent with the decreases observed in IK1, Ito, and IKur potassium currents and the absence of effect on the sodium current INa. Surface ECG revealed an increased corrected QT interval in αMHC-Cre/SAP97(fl/fl) mice. CONCLUSION These data suggest that ablation of SAP97 in the mouse heart mainly alters potassium channel function. Based on the important role of SAP97 in regulating the QT interval, DLG1 may be a susceptibility gene to be investigated in patients with congenital long QT syndrome.
Resumo:
BACKGROUND Magnolia bark preparations from Magnolia officinalis of Asian medicinal systems are known for their muscle relaxant effect and anticonvulsant activity. These CNS related effects are ascribed to the presence of the biphenyl-type neolignans honokiol and magnolol that exert a potentiating effect on GABAA receptors. 4-O-methylhonokiol isolated from seeds of the North-American M. grandiflora was compared to honokiol for its activity to potentiate GABAA receptors and its GABAA receptor subtype-specificity was established. METHODS Different recombinant GABAA receptors were functionally expressed in Xenopus oocytes and electrophysiological techniques were used determine to their modulation by 4-O-methylhonokiol. RESULTS 3μM 4-O-methylhonokiol is shown here to potentiate responses of the α₁β₂γ₂ GABAA receptor about 20-fold stronger than the same concentration of honokiol. In the present study potentiation by 4-O-methylhonokiol is also detailed for 12 GABAA receptor subtypes to assess GABAA receptor subunits that are responsible for the potentiating effect. CONCLUSION The much higher potentiation of GABAA receptors at identical concentrations of 4-O-methylhonokiol as compared to honokiol parallels previous observations made in other systems of potentiated pharmacological activity of 4-O-methylhonokiol over honokiol. GENERAL SIGNIFICANCE The results point to the use of 4-O-methylhonokiol as a lead for GABAA receptor potentiation and corroborate the use of M. grandiflora seeds against convulsions in Mexican folk medicine.