970 resultados para Rapid Identification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recurrent congestion caused by high commuter traffic is an irritation to motorway users. Ramp metering (RM) is the most effective motorway control means (M Papageorgiou & Kotsialos, 2002) for significantly reducing motorway congestion. However, given field constraints (e.g. limited ramp space and maximum ramp waiting time), RM cannot eliminate recurrent congestion during the increased long peak hours. This paper, therefore, focuses on rapid congestion recovery to further improve RM systems: that is, to quickly clear congestion in recovery periods. The feasibility of using RM for recovery is analyzed, and a zone recovery strategy (ZRS) for RM is proposed. Note that this study assumes no incident and demand management involved, i.e. no re-routing behavior and strategy considered. This strategy is modeled, calibrated and tested in the northbound model of the Pacific Motorway, Brisbane, Australia in a micro-simulation environment for recurrent congestion scenario, and evaluation results have justified its effectiveness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Austinite (CaZnAsO4⋅OH) is a unique secondary mineral in arsenic-contaminated mine wastes. The infrared and Raman spectroscopies were used to characterize the austenite vibrations. The IR bands at 369, 790 and 416 cm−1 are assigned to the ν2, ν3 and ν4 vibrations of AsO43− unit, respectively. The Raman bands at 814, 779 and 403 cm−1 correspond to the ν1, ν3 and ν4 vibrations of AsO43− unit respectively. The sharp bands at 3265 cm−1 for IR and 3270 cm−1 both reveals that the structural hydroxyl units exist in the austenite structure. The IR and Raman spectra both show that some SO4 units isomorphically replace AsO4 in austinite. X-ray single crystal diffraction provides the arrangement of each atom in the mineral structure, and also confirms that the conclusions made from the vibrational spectra. Micro-powder diffraction was used to confirm our mineral identification due to the small quantity of the austenite crystals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel gray-box neural network model (GBNNM), including multi-layer perception (MLP) neural network (NN) and integrators, is proposed for a model identification and fault estimation (MIFE) scheme. With the GBNNM, both the nonlinearity and dynamics of a class of nonlinear dynamic systems can be approximated. Unlike previous NN-based model identification methods, the GBNNM directly inherits system dynamics and separately models system nonlinearities. This model corresponds well with the object system and is easy to build. The GBNNM is embedded online as a normal model reference to obtain the quantitative residual between the object system output and the GBNNM output. This residual can accurately indicate the fault offset value, so it is suitable for differing fault severities. To further estimate the fault parameters (FPs), an improved extended state observer (ESO) using the same NNs (IESONN) from the GBNNM is proposed to avoid requiring the knowledge of ESO nonlinearity. Then, the proposed MIFE scheme is applied for reaction wheels (RW) in a satellite attitude control system (SACS). The scheme using the GBNNM is compared with other NNs in the same fault scenario, and several partial loss of effect (LOE) faults with different severities are considered to validate the effectiveness of the FP estimation and its superiority.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Effective diagnosis of malaria is a major component of case management. Rapid diagnostic tests (RDTs) based on Plasmodium falciparumhistidine-rich protein 2 (PfHRP2) are popular for diagnosis of this most virulent malaria infection. However, concerns have been raised about the longevity of the PfHRP2 antigenaemia following curative treatment in endemic regions. METHODS: A model of PfHRP2 production and decay was developed to mimic the kinetics of PfHRP2 antigenaemia during infections. Data from two human infection studies was used to fit the model, and to investigate PfHRP2 kinetics. Four malaria RDTs were assessed in the laboratory to determine the minimum detectable concentration of PfHRP2. RESULTS: Fitting of the PfHRP2 dynamics model indicated that in malaria naive hosts, P. falciparum parasites of the 3D7 strain produce 1.4 x 10(-)(1)(3) g of PfHRP2 per parasite per replication cycle. The four RDTs had minimum detection thresholds between 6.9 and 27.8 ng/mL. Combining these detection thresholds with the kinetics of PfHRP2, it is predicted that as few as 8 parasites/muL may be required to maintain a positive RDT in a chronic infection. CONCLUSIONS: The results of the model indicate that good quality PfHRP2-based RDTs should be able to detect parasites on the first day of symptoms, and that the persistence of the antigen will cause the tests to remain positive for at least seven days after treatment. The duration of a positive test result following curative treatment is dependent on the duration and density of parasitaemia prior to treatment and the presence and affinity of anti-PfHRP2 antibodies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Malaria rapid diagnostic tests (RDTs) are increasingly used by remote health personnel with minimal training in laboratory techniques. RDTs must, therefore, be as simple, safe and reliable as possible. Transfer of blood from the patient to the RDT is critical to safety and accuracy, and poses a significant challenge to many users. Blood transfer devices were evaluated for accuracy and precision of volume transferred, safety and ease of use, to identify the most appropriate devices for use with RDTs in routine clinical care. Methods: Five devices, a loop, straw-pipette, calibrated pipette, glass capillary tube, and a new inverted cup device, were evaluated in Nigeria, the Philippines and Uganda. The 227 participating health workers used each device to transfer blood from a simulated finger-prick site to filter paper. For each transfer, the number of attempts required to collect and deposit blood and any spilling of blood during transfer were recorded. Perceptions of ease of use and safety of each device were recorded for each participant. Blood volume transferred was calculated from the area of blood spots deposited on filter paper. Results: The overall mean volumes transferred by devices differed significantly from the target volume of 5 microliters (p < 0.001). The inverted cup (4.6 microliters) most closely approximated the target volume. The glass capillary was excluded from volume analysis as the estimation method used is not compatible with this device. The calibrated pipette accounted for the largest proportion of blood exposures (23/225, 10%); exposures ranged from 2% to 6% for the other four devices. The inverted cup was considered easiest to use in blood collection (206/ 226, 91%); the straw-pipette and calibrated pipette were rated lowest (143/225 [64%] and 135/225 [60%] respectively). Overall, the inverted cup was the most preferred device (72%, 163/227), followed by the loop (61%, 138/227). Conclusions: The performance of blood transfer devices varied in this evaluation of accuracy, blood safety, ease of use, and user preference. The inverted cup design achieved the highest overall performance, while the loop also performed well. These findings have relevance for any point-of-care diagnostics that require blood sampling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Accurate diagnosis is essential for prompt and appropriate treatment of malaria. While rapid diagnostic tests (RDTs) offer great potential to improve malaria diagnosis, the sensitivity of RDTs has been reported to be highly variable. One possible factor contributing to variable test performance is the diversity of parasite antigens. This is of particular concern for Plasmodium falciparum histidine-rich protein 2 (PfHRP2)-detecting RDTs since PfHRP2 has been reported to be highly variable in isolates of the Asia-Pacific region. Methods The pfhrp2 exon 2 fragment from 458 isolates of P. falciparum collected from 38 countries was amplified and sequenced. For a subset of 80 isolates, the exon 2 fragment of histidine-rich protein 3 (pfhrp3) was also amplified and sequenced. DNA sequence and statistical analysis of the variation observed in these genes was conducted. The potential impact of the pfhrp2 variation on RDT detection rates was examined by analysing the relationship between sequence characteristics of this gene and the results of the WHO product testing of malaria RDTs: Round 1 (2008), for 34 PfHRP2-detecting RDTs. Results Sequence analysis revealed extensive variations in the number and arrangement of various repeats encoded by the genes in parasite populations world-wide. However, no statistically robust correlation between gene structure and RDT detection rate for P. falciparum parasites at 200 parasites per microlitre was identified. Conclusions The results suggest that despite extreme sequence variation, diversity of PfHRP2 does not appear to be a major cause of RDT sensitivity variation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the increasing importance of Application Domain Specific Processor (ADSP) design, a significant challenge is to identify special-purpose operations for implementation as a customized instruction. While many methodologies have been proposed for this purpose, they all work for a single algorithm chosen from the target application domain. Such algorithm-specific approaches are not suitable for designing instruction sets applicable to a whole family of related algorithms. For an entire range of related algorithms, this paper develops a methodology for identifying compound operations, as a basis for designing “domain-specific” Instruction Set Architectures (ISAs) that can efficiently run most of the algorithms in a given domain. Our methodology combines three different static analysis techniques to identify instruction sequences common to several related algorithms: identification of (non-branching) instruction sequences that occur commonly across the algorithms; identification of instruction sequences nested within iterative constructs that are thus executed frequently; and identification of commonly-occurring instruction sequences that span basic blocks. Choosing different combinations of these results enables us to design domain-specific special operations with different desired characteristics, such as performance or suitability as a library function. To demonstrate our approach, case studies are carried out for a family of thirteen string matching algorithms. Finally, the validity of our static analysis results is confirmed through independent dynamic analysis experiments and performance improvement measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose Corneal confocal microscopy (CCM) is a rapid non-invasive ophthalmic technique, which has been shown to diagnose and stratify the severity of diabetic neuropathy. Current morphometric techniques assess individual static images of the subbasal nerve plexus; this work explores the potential for non-invasive assessment of the wide-field morphology and dynamic changes of this plexus in vivo. Methods In this pilot study, laser scanning CCM was used to acquire maps (using a dynamic fixation target and semi-automated tiling software) of the central corneal sub-basal nerve plexus in 4 diabetic patients with and 6 without neuropathy and in 2 control subjects. Nerve migration was measured in an additional 7 diabetic patients with neuropathy, 4 without neuropathy and in 2 control subjects by repeating a modified version of the mapping procedure within 2-8 weeks, thus facilitating re-identification of distinctive nerve landmarks in the 2 montages. The rate of nerve movement was determined from these data and normalised to a weekly rate (µm/week), using customised software. Results Wide-field corneal nerve fibre length correlated significantly with the Neuropathy Disability Score (r = -0.58, p < 0.05), vibration perception (r = -0.66, p < 0.05) and peroneal conduction velocity (r = 0.67, p < 0.05). Central corneal nerve fibre length did not correlate with any of these measures of neuropathy (p > 0.05 for all). The rate of corneal nerve migration was 14.3 ± 1.1 µm/week in diabetic patients with neuropathy, 19.7 ± 13.3µm/week in diabetic patients without neuropathy, and 24.4 ± 9.8µm/week in control subjects; however, these differences were not significantly different (p = 0.543). Conclusions Our data demonstrate that it is possible to capture wide-field images of the corneal nerve plexus, and to quantify the rate of corneal nerve migration by repeating this procedure over a number of weeks. Further studies on larger sample sizes are required to determine the utility of this approach for the diagnosis and monitoring of diabetic neuropathy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Small RNA sequencing is commonly used to identify novel miRNAs and to determine their expression levels in plants. There are several miRNA identification tools for animals such as miRDeep, miRDeep2 and miRDeep*. miRDeep-P was developed to identify plant miRNA using miRDeep’s probabilistic model of miRNA biogenesis, but it depends on several third party tools and lacks a user-friendly interface. The objective of our miRPlant program is to predict novel plant miRNA, while providing a user-friendly interface with improved accuracy of prediction. Result We have developed a user-friendly plant miRNA prediction tool called miRPlant. We show using 16 plant miRNA datasets from four different plant species that miRPlant has at least a 10% improvement in accuracy compared to miRDeep-P, which is the most popular plant miRNA prediction tool. Furthermore, miRPlant uses a Graphical User Interface for data input and output, and identified miRNA are shown with all RNAseq reads in a hairpin diagram. Conclusions We have developed miRPlant which extends miRDeep* to various plant species by adopting suitable strategies to identify hairpin excision regions and hairpin structure filtering for plants. miRPlant does not require any third party tools such as mapping or RNA secondary structure prediction tools. miRPlant is also the first plant miRNA prediction tool that dynamically plots miRNA hairpin structure with small reads for identified novel miRNAs. This feature will enable biologists to visualize novel pre-miRNA structure and the location of small RNA reads relative to the hairpin. Moreover, miRPlant can be easily used by biologists with limited bioinformatics skills.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mandatory reporting laws have been created in many jurisdictions as a way of identifying cases of severe child maltreatment on the basis that cases will otherwise remain hidden. These laws usually apply to all four maltreatment types. Other jurisdictions have narrower approaches supplemented by differential response systems, and others still have chosen not to enact mandatory reporting laws for any type of maltreatment. In scholarly research and normative debates about mandatory reporting laws and their effects, the four major forms of child maltreatment—physical abuse, sexual abuse, emotional abuse, and neglect—are often grouped together as if they are homogenous in nature, cause, and consequence. Yet, the heterogeneity of maltreatment types, and different reporting practices regarding them, must be acknowledged and explored when considering what legal and policy frameworks are best suited to identify and respond to cases. A related question which is often conjectured upon but seldom empirically explored, is whether reporting laws make a difference in case identification. This article first considers different types of child abuse and neglect, before exploring the nature and operation of mandatory reporting laws in different contexts. It then posits a differentiation thesis, arguing that different patterns of reporting between both reporter groups and maltreatment types must be acknowledged and analysed, and should inform discussions and assessments of optimal approaches in law, policy and practice. Finally, to contribute to the evidence base required to inform discussion, this article conducts an empirical cross-jurisdictional comparison of the reporting and identification of child sexual abuse in jurisdictions with and withoutmandatory reporting, and concludes that mandatory reporting laws appear to be associated with better case identification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

WHO estimates that half the world’s population is at risk of malaria. In 2012, there were an estimated 207 million cases (with an uncertainty range of 135 million to 287 million) and an estimated 627 000 deaths (with an uncertainty range of 473 000 to 789 000). Approximately 90% of all malaria deaths occur in sub-Saharan Africa, and 77% occur in children under 5 years. Malaria remains endemic in 104 countries, and, while parasite-based diagnosis is increasing, most suspected cases of malaria are still not properly confirmed, resulting in over-use of antimalarial drugs and poor disease monitoring (1)...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oncogenic mutations in BRAF are common in melanoma and drive constitutive activation of the MEK/ERK pathway. To elucidate the transcriptional events downstream of V600EBRAF/MEK signalling we performed gene expression profiling of A375 melanoma cells treated with potent and selective inhibitors of V600EBRAF and MEK (PLX4720 and PD184352 respectively). Using a stringent Bayesian approach, we identified 69 transcripts that appear to be direct transcriptional targets of this pathway and whose expression changed after 6 h of pathway inhibition. We also identified several additional genes whose expression changed after 24 h of pathway inhibition and which are likely to be indirect transcriptional targets of the pathway. Several of these were confirmed by demonstrating their expression to be similarly regulated when BRAF was depleted using RNA interference, and by using qRT-PCR in other BRAF mutated melanoma lines. Many of these genes are transcription factors and feedback inhibitors of the ERK pathway and are also regulated by MEK signalling in NRAS mutant cells. This study provides a basis for understanding the molecular processes that are regulated by V600EBRAF/MEK signalling in melanoma cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the organisational processes driving quality primary care is crucial to the maintaining and improving practice. Qualitative methods are increasingly popular in health services research, but this area is dominated by interview studies. Multiple qualitative methods are rarely used in a systematically integrated fashion. We developed a method to study small primary health care organizations using rapid appraisal and qualitative mixed methods: Q-RARA – Qualitative Rapid Appraisal, Rigorous Analysis