922 resultados para ROC Regression


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In clinical practice, traditional X-ray radiography is widely used, and knowledge of landmarks and contours in anteroposterior (AP) pelvis X-rays is invaluable for computer aided diagnosis, hip surgery planning and image-guided interventions. This paper presents a fully automatic approach for landmark detection and shape segmentation of both pelvis and femur in conventional AP X-ray images. Our approach is based on the framework of landmark detection via Random Forest (RF) regression and shape regularization via hierarchical sparse shape composition. We propose a visual feature FL-HoG (Flexible- Level Histogram of Oriented Gradients) and a feature selection algorithm based on trace radio optimization to improve the robustness and the efficacy of RF-based landmark detection. The landmark detection result is then used in a hierarchical sparse shape composition framework for shape regularization. Finally, the extracted shape contour is fine-tuned by a post-processing step based on low level image features. The experimental results demonstrate that our feature selection algorithm reduces the feature dimension in a factor of 40 and improves both training and test efficiency. Further experiments conducted on 436 clinical AP pelvis X-rays show that our approach achieves an average point-to-curve error around 1.2 mm for femur and 1.9 mm for pelvis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

robreg provides a number of robust estimators for linear regression models. Among them are the high breakdown-point and high efficiency MM-estimator, the Huber and bisquare M-estimator, and the S-estimator, each supporting classic or robust standard errors. Furthermore, basic versions of the LMS/LQS (least median of squares) and LTS (least trimmed squares) estimators are provided. Note that the moremata package, also available from SSC, is required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parameter estimates from commonly used multivariable parametric survival regression models do not directly quantify differences in years of life expectancy. Gaussian linear regression models give results in terms of absolute mean differences, but are not appropriate in modeling life expectancy, because in many situations time to death has a negative skewed distribution. A regression approach using a skew-normal distribution would be an alternative to parametric survival models in the modeling of life expectancy, because parameter estimates can be interpreted in terms of survival time differences while allowing for skewness of the distribution. In this paper we show how to use the skew-normal regression so that censored and left-truncated observations are accounted for. With this we model differences in life expectancy using data from the Swiss National Cohort Study and from official life expectancy estimates and compare the results with those derived from commonly used survival regression models. We conclude that a censored skew-normal survival regression approach for left-truncated observations can be used to model differences in life expectancy across covariates of interest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the problem of nonparametric estimation of a concave regression function F. We show that the supremum distance between the least square s estimatorand F on a compact interval is typically of order(log(n)/n)2/5. This entails rates of convergence for the estimator’s derivative. Moreover, we discuss the impact of additional constraints on F such as monotonicity and pointwise bounds. Then we apply these results to the analysis of current status data, where the distribution function of the event times is assumed to be concave.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let Y_i = f(x_i) + E_i\ (1\le i\le n) with given covariates x_1\lt x_2\lt \cdots\lt x_n , an unknown regression function f and independent random errors E_i with median zero. It is shown how to apply several linear rank test statistics simultaneously in order to test monotonicity of f in various regions and to identify its local extrema.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When considering data from many trials, it is likely that some of them present a markedly different intervention effect or exert an undue influence on the summary results. We develop a forward search algorithm for identifying outlying and influential studies in meta-analysis models. The forward search algorithm starts by fitting the hypothesized model to a small subset of likely outlier-free studies and proceeds by adding studies into the set one-by-one that are determined to be closest to the fitted model of the existing set. As each study is added to the set, plots of estimated parameters and measures of fit are monitored to identify outliers by sharp changes in the forward plots. We apply the proposed outlier detection method to two real data sets; a meta-analysis of 26 studies that examines the effect of writing-to-learn interventions on academic achievement adjusting for three possible effect modifiers, and a meta-analysis of 70 studies that compares a fluoride toothpaste treatment to placebo for preventing dental caries in children. A simple simulated example is used to illustrate the steps of the proposed methodology, and a small-scale simulation study is conducted to evaluate the performance of the proposed method. Copyright © 2016 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS Skeletal muscle wasting affects 20% of patients with chronic heart failure and has serious implications for their activities of daily living. Assessment of muscle wasting is technically challenging. C-terminal agrin-fragment (CAF), a breakdown product of the synaptically located protein agrin, has shown early promise as biomarker of muscle wasting. We sought to investigate the diagnostic properties of CAF in muscle wasting among patients with heart failure. METHODS AND RESULTS We assessed serum CAF levels in 196 patients who participated in the Studies Investigating Co-morbidities Aggravating Heart Failure (SICA-HF). Muscle wasting was identified using dual-energy X-ray absorptiometry (DEXA) in 38 patients (19.4%). Patients with muscle wasting demonstrated higher CAF values than those without (125.1 ± 59.5 pmol/L vs. 103.8 ± 42.9 pmol/L, P = 0.01). Using receiver operating characteristics (ROC), we calculated the optimal CAF value to identify patients with muscle wasting as >87.5 pmol/L, which had a sensitivity of 78.9% and a specificity of 43.7%. The area under the ROC curve was 0.63 (95% confidence interval 0.56-0.70). Using simple regression, we found that serum CAF was associated with handgrip (R = - 0.17, P = 0.03) and quadriceps strength (R = - 0.31, P < 0.0001), peak oxygen consumption (R = - 0.5, P < 0.0001), 6-min walk distance (R = - 0.32, P < 0.0001), and gait speed (R = - 0.2, P = 0.001), as well as with parameters of kidney and liver function, iron metabolism and storage. CONCLUSION CAF shows good sensitivity for the detection of skeletal muscle wasting in patients with heart failure. Its assessment may be useful to identify patients who should undergo additional testing, such as detailed body composition analysis. As no other biomarker is currently available, further investigation is warranted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coronary atherosclerosis has been considered a chronic disease characterized by ongoing progression in response to systemic risk factors and local pro-atherogenic stimuli. As our understanding of the pathobiological mechanisms implicated in atherogenesis and plaque progression is evolving, effective treatment strategies have been developed that led to substantial reduction of the clinical manifestations and acute complications of coronary atherosclerotic disease. More recently, intracoronary imaging modalities have enabled detailed in vivo quantification and characterization of coronary atherosclerotic plaque, serial evaluation of atherosclerotic changes over time, and assessment of vascular responses to effective anti-atherosclerotic medications. The use of intracoronary imaging modalities has demonstrated that intensive lipid lowering can halt plaque progression and may even result in regression of coronary atheroma when the highest doses of the most potent statins are used. While current evidence indicates the feasibility of atheroma regression and of reversal of presumed high-risk plaque characteristics in response to intensive anti-atherosclerotic therapies, these changes of plaque size and composition are modest and their clinical implications remain largely elusive. Growing interest has focused on achieving more pronounced regression of coronary plaque using novel anti-atherosclerotic medications, and more importantly on elucidating ways toward clinical translation of favorable changes of plaque anatomy into more favorable clinical outcomes for our patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Studies that systematically assess change in ulcerative colitis (UC) extent over time in adult patients are scarce. AIM To assess changes in disease extent over time and to evaluate clinical parameters associated with this change. METHODS Data from the Swiss IBD cohort study were analysed. We used logistic regression modelling to identify factors associated with a change in disease extent. RESULTS A total of 918 UC patients (45.3% females) were included. At diagnosis, UC patients presented with the following disease extent: proctitis [199 patients (21.7%)], left-sided colitis [338 patients (36.8%)] and extensive colitis/pancolitis [381 (41.5%)]. During a median disease duration of 9 [4-16] years, progression and regression was documented in 145 patients (15.8%) and 149 patients (16.2%) respectively. In addition, 624 patients (68.0%) had a stable disease extent. The following factors were identified to be associated with disease progression: treatment with systemic glucocorticoids [odds ratio (OR) 1.704, P = 0.025] and calcineurin inhibitors (OR: 2.716, P = 0.005). No specific factors were found to be associated with disease regression. CONCLUSIONS Over a median disease duration of 9 [4-16] years, about two-thirds of UC patients maintained the initial disease extent; the remaining one-third had experienced either progression or regression of the disease extent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adult male golden hamster, when exposed to blinding (BL), short photoperiod (SP), or daily melatonin injections (MEL) demonstrates dramatic reproductive collapse. This collapse can be blocked by removal of the pineal gland prior to treatment. Reproductive collapse is characterized by a dramatic decrease in both testicular weight and serum gonadotropin titers. The present study was designed to examine the interactions of the hypothalamus and pituitary gland during testicular regression, and to specifically compare and contrast changes caused by the three commonly employed methods of inducing testicular regression (BL,SP,MEL). Hypothalamic LHRH content was altered by all three treatments. There was an initial increase in content of LHRH that occurred concomitantly with the decreased serum gonadotropin titers, followed by a precipitous decline in LHRH content which reflected the rapid increases in both serum LH and FSH which occur during spontaneous testicular recrudescence. In vitro pituitary responsiveness was altered by all three treatments: there was a decline in basal and maximally stimulatable release of both LH and FSH which paralleled the fall of serum gonadotropins. During recrudescence both basal and maximal release dramatically increased in a manner comparable to serum hormone levels. While all three treatments were equally effective in their ability to induce changes at all levels of the endocrine system, there were important temporal differences in the effects of the various treatments. Melatonin injections induced the most rapid changes in endocrine parameters, followed by exposure to short photoperiod. Blinding required the most time to induce the same changes. This study has demonstrated that pineal-mediated testicular regression is a process which involves dynamic changes in multiply-dependent endocrine relationships, and proper evaluation of these changes must be performed with specific temporal events in mind. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consider a nonparametric regression model Y=mu*(X) + e, where the explanatory variables X are endogenous and e satisfies the conditional moment restriction E[e|W]=0 w.p.1 for instrumental variables W. It is well known that in these models the structural parameter mu* is 'ill-posed' in the sense that the function mapping the data to mu* is not continuous. In this paper, we derive the efficiency bounds for estimating linear functionals E[p(X)mu*(X)] and int_{supp(X)}p(x)mu*(x)dx, where p is a known weight function and supp(X) the support of X, without assuming mu* to be well-posed or even identified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Data Envelopment Analysis (DEA) efficiency score obtained for an individual firm is a point estimate without any confidence interval around it. In recent years, researchers have resorted to bootstrapping in order to generate empirical distributions of efficiency scores. This procedure assumes that all firms have the same probability of getting an efficiency score from any specified interval within the [0,1] range. We propose a bootstrap procedure that empirically generates the conditional distribution of efficiency for each individual firm given systematic factors that influence its efficiency. Instead of resampling directly from the pooled DEA scores, we first regress these scores on a set of explanatory variables not included at the DEA stage and bootstrap the residuals from this regression. These pseudo-efficiency scores incorporate the systematic effects of unit-specific factors along with the contribution of the randomly drawn residual. Data from the U.S. airline industry are utilized in an empirical application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infection with certain types of HPV is a necessary event in the development of cervical carcinoma; however, not all women who become infected will progress. While much is known about the molecular influence of HPV E6 and E7 proteins on the malignant transformation, little is known about the additional factors needed to drive the process. Currently, conventional cervical screening is insufficient at identifying women who are likely to progress from premalignant lesions to carcinoma. Aneuploidy and chromatin texture from image cytometry have been suggested as quantitative measures of nuclear damage in premalignant lesions and cancer, and traditional epidemiologic studies have identified potential factors to aid in the discrimination of those lesions likely to progress. ^ In the current study, real-time PCR was used to quantitate mRNA expression of the E7 gene in women exhibiting normal epithelium, LSIL, and HSIL. Quantitative cytometry was used to gather information about the DNA index and chromatin features of cells from the same women. Logistic regression modeling was used to establish predictor variables for histologic grade based on the traditional epidemiologic risk factors and molecular markers. ^ Prevalence of mRNA transcripts was lower among women with normal histology (27%) than for women with LSIL (40%) and HSIL (37%) with mean levels ranging from 2.0 to 4.2. The transcriptional activity of HPV 18 was higher than that of HPV 16 and increased with increasing level of dysplasia, reinforcing the more aggressive nature of HPV 18. DNA index and mRNA level increased with increasing histological grade. Chromatin score was not correlated with histology but was higher for HPV 18 samples and those with both HPV 18 and HPV 16. However, chromatin score and DNA index were not correlated with mRNA levels. The most predictive variables in the regression modeling were mRNA level, DNA index, parity, and age, and the ROC curves for LSIL and HSIL indicated excellent discrimination. ^ Real-time PCR of viral transcripts could provide a more efficient method to analyze the oncogenic potential within cells from cervical swabs. Epidemiological modeling of malignant progression in the cervix should include molecular markers, as well as the traditional epidemiological risk factors. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ordinal logistic regression models are used to analyze the dependant variable with multiple outcomes that can be ranked, but have been underutilized. In this study, we describe four logistic regression models for analyzing the ordinal response variable. ^ In this methodological study, the four regression models are proposed. The first model uses the multinomial logistic model. The second is adjacent-category logit model. The third is the proportional odds model and the fourth model is the continuation-ratio model. We illustrate and compare the fit of these models using data from the survey designed by the University of Texas, School of Public Health research project PCCaSO (Promoting Colon Cancer Screening in people 50 and Over), to study the patient’s confidence in the completion colorectal cancer screening (CRCS). ^ The purpose of this study is two fold: first, to provide a synthesized review of models for analyzing data with ordinal response, and second, to evaluate their usefulness in epidemiological research, with particular emphasis on model formulation, interpretation of model coefficients, and their implications. Four ordinal logistic models that are used in this study include (1) Multinomial logistic model, (2) Adjacent-category logistic model [9], (3) Continuation-ratio logistic model [10], (4) Proportional logistic model [11]. We recommend that the analyst performs (1) goodness-of-fit tests, (2) sensitivity analysis by fitting and comparing different models.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ordinal outcomes are frequently employed in diagnosis and clinical trials. Clinical trials of Alzheimer's disease (AD) treatments are a case in point using the status of mild, moderate or severe disease as outcome measures. As in many other outcome oriented studies, the disease status may be misclassified. This study estimates the extent of misclassification in an ordinal outcome such as disease status. Also, this study estimates the extent of misclassification of a predictor variable such as genotype status. An ordinal logistic regression model is commonly used to model the relationship between disease status, the effect of treatment, and other predictive factors. A simulation study was done. First, data based on a set of hypothetical parameters and hypothetical rates of misclassification was created. Next, the maximum likelihood method was employed to generate likelihood equations accounting for misclassification. The Nelder-Mead Simplex method was used to solve for the misclassification and model parameters. Finally, this method was applied to an AD dataset to detect the amount of misclassification present. The estimates of the ordinal regression model parameters were close to the hypothetical parameters. β1 was hypothesized at 0.50 and the mean estimate was 0.488, β2 was hypothesized at 0.04 and the mean of the estimates was 0.04. Although the estimates for the rates of misclassification of X1 were not as close as β1 and β2, they validate this method. X 1 0-1 misclassification was hypothesized as 2.98% and the mean of the simulated estimates was 1.54% and, in the best case, the misclassification of k from high to medium was hypothesized at 4.87% and had a sample mean of 3.62%. In the AD dataset, the estimate for the odds ratio of X 1 of having both copies of the APOE 4 allele changed from an estimate of 1.377 to an estimate 1.418, demonstrating that the estimates of the odds ratio changed when the analysis includes adjustment for misclassification. ^