980 resultados para RBCL SEQUENCE ANALYSES
Resumo:
Fusarium oxysporum f. sp. cubense (Foc), causal agent of fusarium wilt of banana, is among the most destructive pathogens of banana and plantain. The development of a molecular diagnostic capable of reliably distinguishing between the various races of the pathogen is of key importance to disease management. However, attempts to distinguish isolates using the standard molecular loci typically used for fungal phylogenetics have been complicated by a poor correlation between phylogeny and pathogenicity. Among the available alternative loci are several putative effector genes, known as SIX genes, which have been successfully used to differentiate the three races of F. oxysporum f. sp. lycopersici. In this study, an international collection of Foc isolates was screened for the presence of the putative effector SIX8. Using a PCR and sequencing approach, variation in Foc-SIX8 was identified which allowed race 4 to be differentiated from race 1 and 2 isolates, and tropical and subtropical race 4 isolates to be distinguished from one another.
Resumo:
- Background Nilotinib and dasatinib are now being considered as alternative treatments to imatinib as a first-line treatment of chronic myeloid leukaemia (CML). - Objective This technology assessment reviews the available evidence for the clinical effectiveness and cost-effectiveness of dasatinib, nilotinib and standard-dose imatinib for the first-line treatment of Philadelphia chromosome-positive CML. - Data sources Databases [including MEDLINE (Ovid), EMBASE, Current Controlled Trials, ClinicalTrials.gov, the US Food and Drug Administration website and the European Medicines Agency website] were searched from search end date of the last technology appraisal report on this topic in October 2002 to September 2011. - Review methods A systematic review of clinical effectiveness and cost-effectiveness studies; a review of surrogate relationships with survival; a review and critique of manufacturer submissions; and a model-based economic analysis. - Results Two clinical trials (dasatinib vs imatinib and nilotinib vs imatinib) were included in the effectiveness review. Survival was not significantly different for dasatinib or nilotinib compared with imatinib with the 24-month follow-up data available. The rates of complete cytogenetic response (CCyR) and major molecular response (MMR) were higher for patients receiving dasatinib than for those with imatinib for 12 months' follow-up (CCyR 83% vs 72%, p < 0.001; MMR 46% vs 28%, p < 0.0001). The rates of CCyR and MMR were higher for patients receiving nilotinib than for those receiving imatinib for 12 months' follow-up (CCyR 80% vs 65%, p < 0.001; MMR 44% vs 22%, p < 0.0001). An indirect comparison analysis showed no difference between dasatinib and nilotinib for CCyR or MMR rates for 12 months' follow-up (CCyR, odds ratio 1.09, 95% CI 0.61 to 1.92; MMR, odds ratio 1.28, 95% CI 0.77 to 2.16). There is observational association evidence from imatinib studies supporting the use of CCyR and MMR at 12 months as surrogates for overall all-cause survival and progression-free survival in patients with CML in chronic phase. In the cost-effectiveness modelling scenario, analyses were provided to reflect the extensive structural uncertainty and different approaches to estimating OS. First-line dasatinib is predicted to provide very poor value for money compared with first-line imatinib, with deterministic incremental cost-effectiveness ratios (ICERs) of between £256,000 and £450,000 per quality-adjusted life-year (QALY). Conversely, first-line nilotinib provided favourable ICERs at the willingness-to-pay threshold of £20,000-30,000 per QALY. - Limitations Immaturity of empirical trial data relative to life expectancy, forcing either reliance on surrogate relationships or cumulative survival/treatment duration assumptions. - Conclusions From the two trials available, dasatinib and nilotinib have a statistically significant advantage compared with imatinib as measured by MMR or CCyR. Taking into account the treatment pathways for patients with CML, i.e. assuming the use of second-line nilotinib, first-line nilotinib appears to be more cost-effective than first-line imatinib. Dasatinib was not cost-effective if decision thresholds of £20,000 per QALY or £30,000 per QALY were used, compared with imatinib and nilotinib. Uncertainty in the cost-effectiveness analysis would be substantially reduced with better and more UK-specific data on the incidence and cost of stem cell transplantation in patients with chronic CML. - Funding The Health Technology Assessment Programme of the National Institute for Health Research.
Resumo:
NMR spectroscopy enables the study of biomolecules from peptides and carbohydrates to proteins at atomic resolution. The technique uniquely allows for structure determination of molecules in solution-state. It also gives insights into dynamics and intermolecular interactions important for determining biological function. Detailed molecular information is entangled in the nuclear spin states. The information can be extracted by pulse sequences designed to measure the desired molecular parameters. Advancement of pulse sequence methodology therefore plays a key role in the development of biomolecular NMR spectroscopy. A range of novel pulse sequences for solution-state NMR spectroscopy are presented in this thesis. The pulse sequences are described in relation to the molecular information they provide. The pulse sequence experiments represent several advances in NMR spectroscopy with particular emphasis on applications for proteins. Some of the novel methods are focusing on methyl-containing amino acids which are pivotal for structure determination. Methyl-specific assignment schemes are introduced for increasing the size range of 13C,15N labeled proteins amenable to structure determination without resolving to more elaborate labeling schemes. Furthermore, cost-effective means are presented for monitoring amide and methyl correlations simultaneously. Residual dipolar couplings can be applied for structure refinement as well as for studying dynamics. Accurate methods for measuring residual dipolar couplings in small proteins are devised along with special techniques applicable when proteins require high pH or high temperature solvent conditions. Finally, a new technique is demonstrated to diminish strong-coupling induced artifacts in HMBC, a routine experiment for establishing long-range correlations in unlabeled molecules. The presented experiments facilitate structural studies of biomolecules by NMR spectroscopy.
Resumo:
Abstract is not available.
Resumo:
The purpose of this study is to describe the development of application of mass spectrometry for the structural analyses of non-coding ribonucleic acids during past decade. Mass spectrometric methods are compared of traditional gel electrophoretic methods, the characteristics of performance of mass spectrometric, analyses are studied and the future trends of mass spectrometry of ribonucleic acids are discussed. Non-coding ribonucleic acids are short polymeric biomolecules which are not translated to proteins, but which may affect the gene expression in all organisms. Regulatory ribonucleic acids act through transient interactions with key molecules in signal transduction pathways. Interactions are mediated through specific secondary and tertiary structures. Posttranscriptional modifications in the structures of molecules may introduce new properties to the organism, such as adaptation to environmental changes or development of resistance to antibiotics. In the scope of this study, the structural studies include i) determination of the sequence of nucleobases in the polymer chain, ii) characterisation and localisation of posttranscriptional modifications in nucleobases and in the backbone structure, iii) identification of ribonucleic acid-binding molecules and iv) probing of higher order structures in the ribonucleic acid molecule. Bacteria, archaea, viruses and HeLa cancer cells have been used as target organisms. Synthesised ribonucleic acids consisting of structural regions of interest have been frequently used. Electrospray ionisation (ESI) and matrix-assisted laser desorption ionisation (MALDI) have been used for ionisation of ribonucleic analytes. Ammonium acetate and 2-propanol are common solvents for ESI. Trihydroxyacetophenone is the optimal MALDI matrix for ionisation of ribonucleic acids and peptides. Ammonium salts are used in ESI buffers and MALDI matrices as additives to remove cation adducts. Reverse phase high performance liquid chromatography has been used for desalting and fractionation of analytes either off-line of on-line, coupled with ESI source. Triethylamine and triethylammonium bicarbonate are used as ion pair reagents almost exclusively. Fourier transform ion cyclotron resonance analyser using ESI coupled with liquid chromatography is the platform of choice for all forms of structural analyses. Time-of-flight (TOF) analyser using MALDI may offer sensitive, easy-to-use and economical solution for simple sequencing of longer oligonucleotides and analyses of analyte mixtures without prior fractionation. Special analysis software is used for computer-aided interpretation of mass spectra. With mass spectrometry, sequences of 20-30 nucleotides of length may be determined unambiguously. Sequencing may be applied to quality control of short synthetic oligomers for analytical purposes. Sequencing in conjunction with other structural studies enables accurate localisation and characterisation of posttranscriptional modifications and identification of nucleobases and amino acids at the sites of interaction. High throughput screening methods for RNA-binding ligands have been developed. Probing of the higher order structures has provided supportive data for computer-generated three dimensional models of viral pseudoknots. In conclusion. mass spectrometric methods are well suited for structural analyses of small species of ribonucleic acids, such as short non-coding ribonucleic acids in the molecular size region of 20-30 nucleotides. Structural information not attainable with other methods of analyses, such as nuclear magnetic resonance and X-ray crystallography, may be obtained with the use of mass spectrometry. Sequencing may be applied to quality control of short synthetic oligomers for analytical purposes. Ligand screening may be used in the search of possible new therapeutic agents. Demanding assay design and challenging interpretation of data requires multidisclipinary knowledge. The implement of mass spectrometry to structural studies of ribonucleic acids is probably most efficiently conducted in specialist groups consisting of researchers from various fields of science.
Resumo:
The first complete genome sequence of capsicum chlorosis virus (CaCV) from Australia was determined using a combination of Illumina HiSeq RNA and Sanger sequencing technologies. Australian CaCV had a tripartite genome structure like other CaCV isolates. The large (L) RNA was 8913 nucleotides (nt) in length and contained a single open reading frame (ORF) of 8634 nt encoding a predicted RNA-dependent RNA polymerase (RdRp) in the viral-complementary (vc) sense. The medium (M) and small (S) RNA segments were 4846 and 3944 nt in length, respectively, each containing two non-overlapping ORFs in ambisense orientation, separated by intergenic regions (IGR). The M segment contained ORFs encoding the predicted non-structural movement protein (NSm; 927 nt) and precursor of glycoproteins (GP; 3366 nt) in the viral sense (v) and vc strand, respectively, separated by a 449-nt IGR. The S segment coded for the predicted nucleocapsid (N) protein (828 nt) and non-structural suppressor of silencing protein (NSs; 1320 nt) in the vc and v strand, respectively. The S RNA contained an IGR of 1663 nt, being the largest IGR of all CaCV isolates sequenced so far. Comparison of the Australian CaCV genome with complete CaCV genome sequences from other geographic regions showed highest sequence identity with a Taiwanese isolate. Genome sequence comparisons and phylogeny of all available CaCV isolates provided evidence for at least two highly diverged groups of CaCV isolates that may warrant re-classification of AIT-Thailand and CP-China isolates as unique tospoviruses, separate from CaCV.
Resumo:
Turnip mosaic virus (TuMV) is a potyvirus that is transmitted by aphids and infects a wide range of plant species. We investigated the evolution of this pathogen by collecting 32 isolates of TuMV, mostly from Brassicaceae plants, in Australia and New Zealand. We performed a variety of sequence-based phylogenetic and population genetic analyses of the complete genomic sequences and of three non-recombinogenic regions of those sequences. The substitution rates, divergence times and phylogeographical patterns of the virus populations were estimated. Six inter- and seven intralineage recombination-type patterns were found in the genomes of the Australian and New Zealand isolates, and all were novel. Only one recombination-type pattern has been found in both countries. The Australian and New Zealand populations were genetically different, and were different from the European and Asian populations. Our Bayesian coalescent analyses, based on a combination of novel and published sequence data from three nonrecombinogenic protein-encoding regions, showed that TuMV probably started to migrate from Europe to Australia and New Zealand more than 80 years ago, and that distinct populations arose as a result of evolutionary drivers such as recombination. The basal-B2 subpopulation in Australia and New Zealand seems to be older than those of the world-B2 and -B3 populations. To our knowledge, our study presents the first population genetic analysis of TuMV in Australia and New Zealand. We have shown that the time of migration of TuMV correlates well with the establishment of agriculture and migration of Europeans to these countries.
Resumo:
Summary We have determined the full-length 14,491-nucleotide genome sequence of a new plant rhabdovirus, alfalfa dwarf virus (ADV). Seven open reading frames (ORFs) were identified in the antigenomic orientation of the negative-sense, single-stranded viral RNA, in the order 3′-N-P-P3-M-G-P6-L-5′. The ORFs are separated by conserved intergenic regions and the genome coding region is flanked by complementary 3′ leader and 5′ trailer sequences. Phylogenetic analysis of the nucleoprotein amino acid sequence indicated that this alfalfa-infecting rhabdovirus is related to viruses in the genus Cytorhabdovirus. When transiently expressed as GFP fusions in Nicotiana benthamiana leaves, most ADV proteins accumulated in the cell periphery, but unexpectedly P protein was localized exclusively in the nucleus. ADV P protein was shown to have a homotypic, and heterotypic nuclear interactions with N, P3 and M proteins by bimolecular fluorescence complementation. ADV appears unique in that it combines properties of both cytoplasmic and nuclear plant rhabdoviruses.
Resumo:
Bacteria play an important role in many ecological systems. The molecular characterization of bacteria using either cultivation-dependent or cultivation-independent methods reveals the large scale of bacterial diversity in natural communities, and the vastness of subpopulations within a species or genus. Understanding how bacterial diversity varies across different environments and also within populations should provide insights into many important questions of bacterial evolution and population dynamics. This thesis presents novel statistical methods for analyzing bacterial diversity using widely employed molecular fingerprinting techniques. The first objective of this thesis was to develop Bayesian clustering models to identify bacterial population structures. Bacterial isolates were identified using multilous sequence typing (MLST), and Bayesian clustering models were used to explore the evolutionary relationships among isolates. Our method involves the inference of genetic population structures via an unsupervised clustering framework where the dependence between loci is represented using graphical models. The population dynamics that generate such a population stratification were investigated using a stochastic model, in which homologous recombination between subpopulations can be quantified within a gene flow network. The second part of the thesis focuses on cluster analysis of community compositional data produced by two different cultivation-independent analyses: terminal restriction fragment length polymorphism (T-RFLP) analysis, and fatty acid methyl ester (FAME) analysis. The cluster analysis aims to group bacterial communities that are similar in composition, which is an important step for understanding the overall influences of environmental and ecological perturbations on bacterial diversity. A common feature of T-RFLP and FAME data is zero-inflation, which indicates that the observation of a zero value is much more frequent than would be expected, for example, from a Poisson distribution in the discrete case, or a Gaussian distribution in the continuous case. We provided two strategies for modeling zero-inflation in the clustering framework, which were validated by both synthetic and empirical complex data sets. We show in the thesis that our model that takes into account dependencies between loci in MLST data can produce better clustering results than those methods which assume independent loci. Furthermore, computer algorithms that are efficient in analyzing large scale data were adopted for meeting the increasing computational need. Our method that detects homologous recombination in subpopulations may provide a theoretical criterion for defining bacterial species. The clustering of bacterial community data include T-RFLP and FAME provides an initial effort for discovering the evolutionary dynamics that structure and maintain bacterial diversity in the natural environment.
Resumo:
A limited number of plant rhabdovirus genomes have been fully sequenced, making taxonomic classification, evolutionary analysis and molecular characterization of this virus group difficult. We have for the first time determined the complete genome sequence of 13,188 nucleotides of Datura yellow vein nucleorhabdovirus (DYVV). DYVV genome organization resembles that of its closest relative, Sonchus yellow net virus (SYNV), with six ORFs in antigenomic orientation, separated by highly conserved intergenic regions and flanked by complementary 3′ leader and 5′ trailer sequences. As is typical for nucleorhabdoviruses, all viral proteins, except the glycoprotein, which is targeted to the endoplasmic reticulum, are localized to the nucleus. Nucleocapsid (N) protein, matrix (M) protein and polymerase, as components of nuclear viroplasms during replication, have predicted strong canonical nuclear localization signals, and N and M proteins exclusively localize to the nucleus when transiently expressed as GFP fusions. As in all nucleorhabdoviruses studied so far, N and phosphoprotein P interact when co-expressed, significantly increasing P nuclear localization in the presence of N protein. This research adds to the list of complete genomes of plant-infecting rhabdoviruses, provides molecular tools for further characterization and supports classification of DYVV as a nucleorhabdovirus closely related to but with some distinct differences from SYNV.
Resumo:
Background: Mango fruits contain a broad spectrum of phenolic compounds which impart potential health benefits; their biosynthesis is catalysed by enzymes in the phenylpropanoid-flavonoid (PF) pathway. The aim of this study was to reveal the variability in genes involved in the PF pathway in three different mango varieties Mangifera indica L., a member of the family Anacardiaceae: Kensington Pride (KP), Irwin (IW) and Nam Doc Mai (NDM) and to determine associations with gene expression and mango flavonoid profiles. Results: A close evolutionary relationship between mango genes and those from the woody species poplar of the Salicaceae family (Populus trichocarpa) and grape of the Vitaceae family (Vitis vinifera), was revealed through phylogenetic analysis of PF pathway genes. We discovered 145 SNPs in total within coding sequences with an average frequency of one SNP every 316bp. Variety IW had the highest SNP frequency (one SNP every 258bp) while KP and NDM had similar frequencies (one SNP every 369bp and 360bp, respectively). The position in the PF pathway appeared to influence the extent of genetic diversity of the encoded enzymes. The entry point enzymes phenylalanine lyase (PAL), cinnamate 4-mono-oxygenase (C4H) and chalcone synthase (CHS) had low levels of SNP diversity in their coding sequences, whereas anthocyanidin reductase (ANR) showed the highest SNP frequency followed by flavonoid 3'-hydroxylase (F3'H). Quantitative PCR revealed characteristic patterns of gene expression that differed between mango peel and flesh, and between varieties. Conclusions: The combination of mango expressed sequence tags and availability of well-established reference PF biosynthetic genes from other plant species allowed the identification of coding sequences of genes that may lead to the formation of important flavonoid compounds in mango fruits and facilitated characterisation of single nucleotide polymorphisms between varieties. We discovered an association between the extent of sequence variation and position in the pathway for up-stream genes. The high expression of PAL, C4H and CHS genes in mango peel compared to flesh is associated with high amounts of total phenolic contents in peels, which suggest that these genes have an influence on total flavonoid levels in mango fruit peel and flesh. In addition, the particularly high expression levels of ANR in KP and NDM peels compared to IW peel and the significant accumulation of its product epicatechin gallate (ECG) in those extracts reflects the rate-limiting role of ANR on ECG biosynthesis in mango. © 2015 Hoang et al.
Resumo:
Expressed sequence tag (EST) databases provide a primary source of nuclear DNA sequences for genetic marker development in non-model organisms. To date, the process has been relatively inefficient for several reasons: - 1) priming site polymorphism in the template leads to inferior or erratic amplification; - 2) introns in the target amplicon are too large and/or numerous to allow effective amplification under standard screening conditions, and; - 3) at least occasionally, a PCR primer straddles an exon–intron junction and is unable to bind to genomic DNA template. The first is only a minor issue for species or strains with low heterozygosity but becomes a significant problem for species with high genomic variation, such as marine organisms with extremely large effective population sizes. Problems arising from unanticipated introns are unavoidable but are most pronounced in intron-rich species, such as vertebrates and lophotrochozoans. We present an approach to marker development in the Pacific oyster Crassostrea gigas, a highly polymorphic and intron-rich species, which minimizes these problems, and should be applicable to other non-model species for which EST databases are available. Placement of PCR primers in the 3′ end of coding sequence and 3′ UTR improved PCR success rate from 51% to 97%. Almost all (37 of 39) markers developed for the Pacific oyster were polymorphic in a small test panel of wild and domesticated oysters.