913 resultados para Quasars, Absorption Lines
Resumo:
Little is known about insect intestinal sugar absorption, in spite of the recent findings, and even less has been published regarding water absorption. The aim of this study was to shed light on putative transporters of water and glucose in the insect midgut Glucose and water absorptions by the anterior ventriculus of Dysdercus peruvianus midgut were determined by feeding the insects with a glucose and a non-absorbable dye solution, followed by periodical dissection of insects and analysis of ventricular contents. Glucose absorption decreases glucose/dye ratios and water absorption increases dye concentrations. Water and glucose transports are activated (water 50%, glucose 33%) by 50 mM K(2)SO(4) and are inhibited (water 46%, glucose 82%) by 0.2 mM phloretin, the inhibitor of the facilitative hexose transporter (GLUT) or are inhibited (water 45%, glucose 35%) by 0.1 mM phlorizin, the inhibitor of the Na(+)-glucose cotransporter (SGLT). The results also showed that the putative SGLT transports about two times more water relative to glucose than the putative GLUT. These results mean that D. peruvianus uses a GLUT-like transporter and an SGLT-like transporter (with K(+) instead of Na(+)) to absorb dietary glucose and water. A cDNA library from D. peruvianus midgut was screened and we found one sequence homologous to GLUT1, named DpGLUT, and another to a sodium/solute symporter, named DpSGLT. Semi-quantitative RT-PCR studies revealed that DpGLUT and DpSGLTs mRNA were expressed in the anterior midgut, where glucose and water are absorbed, but not in fat body, salivary gland and Malpighian tubules. This is the first report showing the involvement of putative GLUT and SGLT in both water and glucose midgut absorption in insects. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Peptides have been proposed to function in intracellular signaling within the cytosol. Although cytosolic peptides are considered to be highly unstable, a large number of peptides have been detected in mouse brain and other biological samples. In the present study, we evaluated the peptidome of three diverse cell lines: SH-SY5Y, MCF7, and HEIC293 cells. A comparison of the peptidomes revealed considerable overlap in the identity of the peptides found in each cell line. The majority of the observed peptides are not derived from the most abundant or least stable proteins in the cell, and approximately half of the cellular peptides correspond to the N- or C- termini of the precursor proteins. Cleavage site analysis revealed a preference for hydrophobic residues in the PI position. Quantitative peptidomic analysis indicated that the levels of most cellular peptides are not altered in response to elevated intracellular calcium, suggesting that calpain is not responsible for their production. The similarity of the peptidomes of the three cell lines and the lack of correlation with the predicted cellular degradome implies the selective formation or retention of these peptides, consistent with the hypothesis that they are functional in the cells.
Resumo:
The present paper shows, for the first time, the membrane expression of the dendritic cell maturation marker CD83 on tumor cells from lung cancer patients. CD83 was also detected on freshly cultured fibroblast-like cells from these tissues and on several adherent human tumor cell lines (lung adenocarcinomas P9, A459 and A549, melanomas A375 and C81-61, breast adenocarcinomas SKBR-3 and MCF-7 and colon carcinoma AR42-J), but not in the non-adherent MOT leukemia cell line. CD83 may have immunosuppressive properties and its expression by cancer cells could have a role in facilitating tumor growth.
Resumo:
We studied the induction of protease activity by the laminin alpha 1-derived peptide AG73 in cells from adenoid cystic carcinoma (CAC2) and myoepithelioma (M1), respectively a malignant and a benign salivary gland tumors. Laminin alpha 1 chain and MMP9 were immunolocalized in adenoid cystic carcinoma and myoepithelioma in vivo and in vitro. Cells grown inside AG73-enriched laminin-111 exhibited large spaces in the extracellular matrix, suggestive of remodeling. The broad spectrum MMP inhibitor GM6001 decreased spaces induced by AG73 in CAC2 and M I cells. This result strongly suggests that AG73-mediated matrix remodeling involves matrix metalloproteinases. CAC2 and M1 cells cultured on AG73 showed a dose-dependent increase of MMP9 secretion, as detected by zymography. Furthermore, siRNA silencing of MMP9 decreased remodeling in 3D cultures. We searched for AG73 receptors regulating MMP9 activity in our cell lines. CAC2 and M1 cells grown on AG73 exhibited colocalization of syndecan-1 and beta 1 integrin. siRNA knockdown of syndecan-1 expression in these cells resulted in decreased adhesion to AG73 and reduced protease and remodeling activity. We investigated syndecan-1 co-receptors in both cell lines. Silencing beta 1 integrin inhibited adhesion to AG73, matrix remodeling and protease activity. Double-knockdown experiments were carried out to further explore syndecan-1 and beta 1 integrin cooperation. CAC2 cells transfected with both syndecan-1 and beta 1 integrin siRNA oligos showed significant decrease in adhesion to AG73. Simultaneous silencing of receptors also induced a decrease in protease activity. Our results suggest that syndecan-1 and beta 1 integrin signaling downstream of AG73 regulate adhesion and MMP production by CAC2 and M1 cells. (c) 2008 Elsevier B.V./International Society of Matrix Biology. All rights reserved.
Resumo:
Several noncoding microRNAs (miR or miRNA) have been shown to regulate the expression of drug-metabolizing enzymes and transporters. Xenobiotic drug-induced changes in enzyme and transporter expression may be associated with the alteration of miRNA expression. Therefore, this study investigated the impact of 19 xenobiotic drugs (e. g. dexamethasone, vinblastine, bilobalide and cocaine) on the expression of ten miRNAs (miR-18a, -27a, -27b, -124a, -148a, -324-3p, -328, -451, -519c and -1291) in MCF-7, Caco-2, SH-SY5Y and BE(2)-M17 cell systems. The data revealed that miRNAs were differentially expressed in human cell lines and the change in miRNA expression was dependent on the drug, as well as the type of cells investigated. Notably, treatment with bilobalide led to a 10-fold increase of miR-27a and a 2-fold decrease of miR-148a in Caco-2 cells, but no change of miR-27a and a 2-fold increase of miR-148a in MCF-7 cells. Neuronal miR-124a was generally down-regulated by psychoactive drugs (e. g. cocaine, methadone and fluoxetine) in BE(2)-M17 and SH-SY5Y cells. Dexamethasone and vinblastine, inducers of drug-metabolizing enzymes and transporters, suppressed the expression of miR-27b, -148a and -451 that down-regulate the enzymes and transporters. These findings should provide increased understanding of the altered gene expression underlying drug disposition, multidrug resistance, drug-drug interactions and neuroplasticity. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
In this paper we consider the programming of job rotation in the assembly line worker assignment and balancing problem. The motivation for this study comes from the designing of assembly lines in sheltered work centers for the disabled, where workers have different task execution times. In this context, the well-known training aspects associated with job rotation are particularly desired. We propose a metric along with a mixed integer linear model and a heuristic decomposition method to solve this new job rotation problem. Computational results show the efficacy of the proposed heuristics. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The aerosol spectral absorption efficiency (alpha(a) in m(2)/g) is measured over an extended wavelength range (350-2500 nm) using an improved calibrated and validated reflectance technique and applied to urban aerosol samples from Sao Paulo, Brazil and from a site in Virginia, Eastern US, that experiences transported urban/industrial aerosol. The average alpha(a) values (similar to 3m(2)/g at 550 nm) for Sao Paulo samples are 10 times larger than a a values obtained for aerosols in Virginia. Sao Paulo aerosols also show evidence of enhanced UV absorption in selected samples, probably associated with organic aerosol components. This extra UV absorption can double the absorption efficiency observed from black carbon alone, therefore reducing by up to 50% the surface UV fluxes, with important implications for climate, UV photolysis rates, and remote sensing from space. Citation: Martins, J.V., P. Artaxo, Y.J. Kaufman, A.D. Castanho, and L.A. Remer (2009), Spectral absorption properties of aerosol particles from 350-2500nm, Geophys. Res. Lett., 36, L13810, doi: 10.1029/2009GL037435.
Resumo:
The magnetic field line structure in a tokamak can be obtained by direct numerical integration of the field line equations. However, this is a lengthy procedure and the analysis of the solution may be very time-consuming. Otherwise we can use simple two-dimensional, area-preserving maps, obtained either by approximations of the magnetic field line equations, or from dynamical considerations. These maps can be quickly iterated, furnishing solutions that mirror the ones obtained from direct numerical integration, and which are useful when long-term studies of field line behavior are necessary (e.g. in diffusion calculations). In this work we focus on a set of simple tokamak maps for which these advantages are specially pronounced.
Resumo:
The absorption spectrum of the acid form of pterin in water was investigated theoretically. Different procedures using continuum, discrete, and explicit models were used to include the solvation effect on the absorption spectrum, characterized by two bands. The discrete and explicit models used Monte Carlo simulation to generate the liquid structure and time-dependent density functional theory (B3LYP/6-31G+(d)) to obtain the excitation energies. The discrete model failed to give the correct qualitative effect on the second absorption band. The continuum model, in turn, has given a correct qualitative picture and a semiquantitative description. The explicit use of 29 solvent molecules, forming a hydration shell of 6 angstrom, embedded in the electrostatic field of the remaining solvent molecules, gives absorption transitions at 3.67 and 4.59 eV in excellent agreement with the S(0)-S(1) and S(0)-S(2) absorption bands at of 3.66 and 4.59 eV, respectively, that characterize the experimental spectrum of pterin in water environment. (C) 2010 Wiley Periodicals, Inc. Int J Quantum Chem 110: 2371-2377, 2010
Resumo:
We address the effect of solvation on the lowest electronic excitation energy of camphor. The solvents considered represent a large variation in-solvent polarity. We consider three conceptually different ways of accounting for the solvent using either an implicit, a discrete or an explicit solvation model. The solvatochromic shifts in polar solvents are found to be in good agreement with the experimental data for all three solvent models. However, both the implicit and discrete solvation models are less successful in predicting solvatochromic shifts for solvents of low polarity. The results presented suggest the importance of using explicit solvent molecules in the case of nonpolar solvents. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Samples of Araucaria area soil from Parana state, Brazil, were separated by particle size fractionation and investigated by electron paramagnetic resonance (EPR) in X-Band of 9.5 GHz at room temperature and 77K, infra-red spectroscopy and X-ray diffractometry. The paramagnetic species in the soil samples were identified by comparison with EPR spectra of some minerals studied recently by our group, several soil types and/or soil components investigated in the literature. The value of g = 2.1 (Delta H = 85 mT) indicated the presence of ferrihydrite. Hematite was identified by g = 2.1 (Delta H = 100 mT) and g = 4.3 for Fe(3+) lines of the concentrated dominium and diluted dominium. Kaolinite was identified by IR and EPR with the resonance at g = 4.3 attributed to Fe(3+) ions in isolated sites of tetrahedral and octahedral symmetry with rhombic distortion. The resonances at g = 3.7 and g = 4.9 were attributed to Fe(3+) in more highly symmetrical environment than rhombic symmetry, but not in axial symmetry. Three signals around g = 2 were attributed to radiation defects, plus additional resonances at g = 2.8 and 9.0. Signals less intense than those at g = 2.1, 3.7, and 6.5, observed for clear grains of soil, were attributed to presence of Fe(3+) in quartz which was identified by IR and XDR. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The thermoluminescence (TL) peak in natural sodalite near 230 degrees C which appears only after submitted to thermal treatments and to gamma irradiation has been studied in parallel with electron paramagnetic resonance (EPR) spectrum appearing under the same procedure This study revealed a full correlation between the 230 degrees C TL peak and the eleven hyperfine lines from EPR spectrum In both case the centers disappear at the same temperature and are restored after gamma irradiation A complete model for the 230 C TL peak is presented and discussed In addition to the correlation and TL model specific characteristics of the TL peaks are described (C) 2010 Elsevier B V All rights reserved
Resumo:
Thermoluminescence, electron paramagnetic resonance and optical absorption properties of rhodonite, a natural silicate mineral, have been investigated and compared to those of synthetic crystal, pure and doped. The TL peaks grow linearly for radiation dose up to 4 kGy, and then saturate. In all the synthetic samples, 140 and 340 degrees C TL peaks are observed; the difference occurs in their relative intensities, but only 340 degrees C peak grows strongly for high doses. Al(2)O(3) and Al(2)O(3) + CaO-doped synthetic samples presented several decades intenser TL compared to that of synthetic samples doped with other impurities. A heating rate of 4 degrees C/s has been used in all the TL readings. The EPR spectrum of natural rhodonite mineral has only one huge signal around g = 2.0 with width extending from 1,000 to 6,000 G. This is due to Mn dipolar interaction, a fact proved by numerical calculation based on Van Vleck dipolar broadening expression. The optical absorption spectrum is rich in absorption bands in near-UV, visible and near-IR intervals. Several bands in the region from 540 to 340 nm are interpreted as being due to Mn(3+) in distorted octahedral environment. A broad and intense band around 1,040 nm is due to Fe(2+). It decays under heating up to 900 degrees C. At this temperature it is reduced by 80% of its original intensity. The pink, natural rhodonite, heated in air starts becoming black at approximately 600 degrees C.
Resumo:
Grossular is one of six members of silicate Garnet group. Two samples GI and GII have been investigated concerning their luminescence thermally stimulated (TL). EPR and optical absorption and the measurements were carried out to find out whether or not same point defects are responsible for all three properties. Although X-rays diffraction analysis has shown that both GI and GII have practically the same crystal structure of a standard grossular crystal, they presented different behavior in many aspects. The TL glow curve shape, TL response to radiation dose, the effect of annealing at high temperatures before irradiation, the dependence of UV bleaching parameters on peak temperature, all of them differ going from GI to GII. The EPR signals around g = 2.0 as well as at g = 4.3 and 6.0 have much larger intensity in GI than in GII. Very high temperature (> 800 degrees C annealing causes large increase in the bulk background absorption in GI, however, only very little in GII. In the cases of EPR and optical absorption, the difference in their behavior can be attributed to Fe3+ ions; however, in the TL case one cannot and the cause was not found as yet. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The optical absorption spectra of two samples of grossular have been measured at room temperature. An intense charge transfer band (UVCT) of iron extends to the visible and near infrared region. Some peaks associated to Fe3+ ions in tetrahedral and octahedral positions have been identified and their energy levels were computed. Mn2+ and Fe2+ ions are responsible with some bands and probably these ions occupy dodecahedral positions. No change in the intensity of optical absorption spectra were found after gamma dose, but only the 505 nm band decreases with irradiation. The OH spectra, consisting of OH overtones at 2750nm and asymmetric OH bands in the near infrared region were observed in the two samples. The heat treatment produces Fe2+ -> Fe3+ and Mn2+ -> Mn3+ by oxidation. This last was observed in sample II only. The thermally stimulated luminescence of both grossular samples has been investigated. Due to differences in iron and manganese concentration, not only a large difference has been observed in their optical absorption behavior, but also a striking difference in their thermoluminescent behavior. Actually, it is not clear whether other impurities such as Ti, Na and K that are present in quite different concentration in grossular I and II are also contributing to the thermoluminescenct properties of both samples. (C) 2008 Elsevier Ltd. All rights reserved.