963 resultados para Pseudomonas aeruginosa LBI mutant
Resumo:
Este trabalho teve como objetivo determinar a ocorrência e os fatores de risco associados à infecção por Corynebacterium pseudotuberculosis em caprinos e ovinos do semiárido da Paraiba. De 640 animais examinados, 7,7% (49/640) apresentavam evidências clínicas de linfadenite caseosa. Em 59,2% (29/49) destes animais havia apenas as cicatrizes de abscessos anteriormente rompidos; em 40,8% (20/49) dos animais, os abscessos estavam intactos. Desses 20 animais, 13 (65%) caprinos apresentaram 14 abscessos, enquanto que sete (35%) ovinos apresentaram oito abscessos. Em ambas as espécies, o linfonodo pré-escapular foi o mais acometido. No exame microbiológico, constatou-se que C. pseudotuberculosis foi o agente mais frequentemente isolado, em 15 (68,2%) amostras; em uma (4,5%) foi isolado Staphylococcus coagulase negativa; uma (4,5%) Enterococcus sp.; uma (4,5%) o Proteus mirabilis e Pseudomonas aeruginosa; e em quatro (18,2%) amostras não houve crescimento bacteriano. O modelo final de regressão logística mostrou que animais provenientes de rebanhos em que seus proprietários deixavam os abscessos romperem naturalmente tiveram maior chance de apresentar linfadenite caseosa (odds ratio =8,19; IC 95% =1,75-38,25; p=0,008). Conclui-se que os caprinovinocultores da região devem adotar medidas profiláticas em seus rebanhos, como abertura e drenagem precoce dos abscessos superficiais e destino adequado do conteúdo. Tais medidas, associadas à inspeção periódica do rebanho, descarte de animais doentes e não introdução de animais infectados, contribuirão significativamente para o controle desta infecção.
Resumo:
As broncopneumonias são afecções importantes na pecuária mundial, representando uma das principais causas de mortalidade de bezerros nos primeiros meses de vida. As medidas preventivas e terapêuticas adotadas geralmente são baseadas em resultados de estudos internacionais, não se conhecendo as bactérias implicadas nos quadros pneumônicos em animais criados no Brasil. Aliado a isso, no primeiro mês de vida, os bezerros demonstram imaturidade do sistema imune, o que tem sido pouco estudado em quadros pneumônicos. Desta maneira, objetivou-se estudar as broncopneumonias em bezerros neonatos, identificando bactérias do trato respiratório posterior de bezerros sadios e com pneumonias naturalmente adquiridas, bem como analisar citologicamente a resposta pulmonar frente a estes patógenos. Para isso amostras de lavado do trato respiratório foram colhidas por traqueocentese durante o primeiro mês de vida dos animais. Verificou-se que não houve diferença na microbiota traqueobrônquica de bezerros sadios em relação aos doentes, discordando dos relatos da literatura internacional, sendo constituída principalmente por: Staphylococcus sp., Bacillus sp., Streptococcus sp., Pseudomonas aeruginosa e enterobactérias, permitindo inferir que as medidas profiláticas e terapêuticas adotadas internacionalmente possam não ser tão efetivas para as criações brasileiras. Observou-se também que bezerros neonatos têm uma proporção aproximada de 1:1 de macrófagos e neutrófilos na região traqueobrônquica quando saudáveis, atingindo uma relação aproximada de 1:3 durante os quadros de broncopneumonias, sendo estes perfis provavelmente característicos da idade, período conhecido pela imaturidade do sistema imune e agravado por fatores de manejo que favoreçam uma maior inalação de agentes bacterianos.
Resumo:
Cranial bone reconstructions are necessary for correcting large skull bone defects due to trauma, tumors, infections and craniotomies. Traditional synthetic implant materials include solid or mesh titanium, various plastics and ceramics. Recently, biostable glass-fiber reinforced composites (FRC), which are based on bifunctional methacrylate resin, were introduced as novel implant solution. FRCs were originally developed and clinically used in dental applications. As a result of further in vitro and in vivo testing, these composites were also approved for clinical use in cranial surgery. To date, reconstructions of large bone defects were performed in 35 patients. This thesis is dedicated to the development of a novel FRC-based implant for cranial reconstructions. The proposed multi-component implant consists of three main parts: (i) porous FRC structure; (ii) bioactive glass granules embedded between FRC layers and (iii) a silver-polysaccharide nanocomposite coating. The porosity of the FRC structure should allow bone ingrowth. Bioactive glass as an osteopromotive material is expected to stimulate the formation of new bone. The polysaccharide coating is expected to prevent bacterial colonization of the implant. The FRC implants developed in this study are based on the porous network of randomly-oriented E-glass fibers bound together by non-resorbable photopolymerizable methacrylate resin. These structures had a total porosity of 10–70 volume %, of which > 70% were open pores. The pore sizes > 100 μm were in the biologically-relevant range (50-400 μm), which is essential for vascularization and bone ingrowth. Bone ingrowth into these structures was simulated by imbedding of porous FRC specimens in gypsum. Results of push-out tests indicated the increase in the shear strength and fracture toughness of the interface with the increase in the total porosity of FRC specimens. The osteopromotive effect of bioactive glass is based on its dissolution in the physiological environment. Here, calcium and phosphate ions, released from the glass, precipitated on the glass surface and its proximity (the FRC) and formed bone-like apatite. The biomineralization of the FRC structure, due to the bioactive glass reactions, was studied in Simulated Body Fluid (SBF) in static and dynamic conditions. An antimicrobial, non-cytotoxic polysaccharide coating, containing silver nanoparticles, was obtained through strong electrostatic interactions with the surface of FRC. In in vitro conditions the lactose-modified chitosan (chitlac) coating showed no signs of degradation within seven days of exposure to lysozyme or one day to hydrogen peroxide (H2O2). The antimicrobial efficacy of the coating was tested against Staphylococcus aureus and Pseudomonas aeruginosa. The contact-active coating had an excellent short time antimicrobial effect. The coating neither affected the initial adhesion of microorganisms to the implant surface nor the biofilm formation after 24 h and 72 h of incubation. Silver ions released to the aqueous environment led to a reduction of bacterial growth in the culture medium.
Resumo:
Sixty-one cystic fibrosis patients admitted for check-up or antibiotic treatment were enrolled for genetic and clinical evaluation. Genetic analysis was performed on blood samples stored on neonatal screening cards using PCR techniques to determine the presence of DF508 mutations. Clinical evaluation included Shwachman and Chrispin-Norman scores, age at onset of symptoms and diagnosis, spirometry, awake and sleep pulse oximetry, hyponychial angle measurement and presence of chronic Pseudomonas aeruginosa colonization. Eighteen patients (29.5%) were homozygous for the DF508 mutation, 26 (42.6%) had one DF508 mutation and 17 (27.9%) were noncarriers, corresponding to a 50.8% prevalence of the mutation in the whole population. Analysis by the Kruskal-Wallis test for comparison of genetic status with continuous variables or by the chi-square test and logistic regression for dichotomous variables showed no significant differences between any two groups for a = 0.05. We conclude that genetic status in relation to the DF508 mutation is not associated with pulmonary status as evaluated by the above variables
Resumo:
Cystic fibrosis (CF) is a lethal autosomal recessive genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR). Mutations in the CFTR gene may result in a defective processing of its protein and alter the function and regulation of this channel. Mutations are associated with different symptoms, including pancreatic insufficiency, bile duct obstruction, infertility in males, high sweat Cl-, intestinal obstruction, nasal polyp formation, chronic sinusitis, mucus dehydration, and chronic Pseudomonas aeruginosa and Staphylococcus aureus lung infection, responsible for 90% of the mortality of CF patients. The gene responsible for the cellular defect in CF was cloned in 1989 and its protein product CFTR is activated by an increase of intracellular cAMP. The CFTR contains two membrane domains, each with six transmembrane domain segments, two nucleotide-binding domains (NBDs), and a cytoplasmic domain. In this review we discuss the studies that have correlated the role of each CFTR domain in the protein function as a chloride channel and as a regulator of the outwardly rectifying Cl- channels (ORCCs).
Resumo:
The genome of Mycobacterium tuberculosis H37Rv contains three contiguous genes (plc-a, plc-b and plc-c) which are similar to the Pseudomonas aeruginosa phospholipase C (PLC) genes. Expression of mycobacterial PLC-a and PLC-b in E. coli and M. smegmatis has been reported, whereas expression of the native proteins in M. tuberculosis H37Rv has not been demonstrated. The objective of the present study was to demonstrate that native PLC-a is expressed in M. tuberculosis H37Rv. Sera from mice immunized with recombinant PLC-a expressed in E. coli were used in immunoblots to evaluate PLC-a expression. The immune serum recognized a 49-kDa protein in immunoblots against M. tuberculosis extracts. No bands were visible in M. tuberculosis culture supernatants or extracts from M. avium, M. bovis and M. smegmatis. A 550-bp DNA fragment upstream of plc-a was cloned in the pJEM12 vector and the existence of a functional promoter was evaluated by detection of ß-galactosidase activity. ß-Galactosidase activity was detected in M. smegmatis transformed with recombinant pJEM12 grown in vitro and inside macrophages. The putative promoter was active both in vitro and in vivo, suggesting that expression is constitutive. In conclusion, expression of non-secreted native PLC-a was demonstrated in M. tuberculosis.
Resumo:
More than 20% of the world's biodiversity is located in Brazilian forests and only a few plant extracts have been evaluated for potential antibacterial activity. In the present study, 705 organic and aqueous extracts of plants obtained from different Amazon Rain Forest and Atlantic Forest plants were screened for antibacterial activity at 100 µg/ml, using a microdilution broth assay against Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa and Escherichia coli. One extract, VO581, was active against S. aureus (minimum inhibitory concentration (MIC) = 140 µg/ml and minimal bactericidal concentration (MBC) = 160 µg/ml, organic extract obtained from stems) and two extracts were active against E. faecalis, SM053 (MIC = 80 µg/ml and MBC = 90 µg/ml, organic extract obtained from aerial parts), and MY841 (MIC = 30 µg/ml and MBC = 50 µg/ml, organic extract obtained from stems). The most active fractions are being fractionated to identify their active substances. Higher concentrations of other extracts are currently being evaluated against the same microorganisms.
Resumo:
A lectin isolated from the red alga Solieria filiformis was evaluated for its effect on the growth of 8 gram-negative and 3 gram-positive bacteria cultivated in liquid medium (three independent experiments/bacterium). The lectin (500 µg/mL) stimulated the growth of the gram-positive species Bacillus cereus and inhibited the growth of the gram-negative species Serratia marcescens, Salmonella typhi, Klebsiella pneumoniae, Enterobacter aerogenes, Proteus sp, and Pseudomonas aeruginosa at 1000 µg/mL but the lectin (10-1000 µg/mL) had no effect on the growth of the gram-positive bacteria Staphylococcus aureus and B. subtilis, or on the gram-negative bacteria Escherichia coli and Salmonella typhimurium. The purified lectin significantly reduced the cell density of gram-negative bacteria, although no changes in growth phases (log, exponential and of decline) were observed. It is possible that the interaction of S. filiformis lectin with the cell surface receptors of gram-negative bacteria promotes alterations in the flow of nutrients, which would explain the bacteriostatic effect. Growth stimulation of the gram-positive bacterium B. cereus was more marked in the presence of the lectin at a concentration of 1000 µg/mL. The stimulation of the growth of B. cereus was not observed when the lectin was previously incubated with mannan (125 µg/mL), its hapten. Thus, we suggest the involvement of the binding site of the lectin in this effect. The present study reports the first data on the inhibition and stimulation of pathogenic bacterial cells by marine alga lectins.
Resumo:
The epidemiology of bacteremia developing during neutropenia has changed in the past decade, with the re-emergence of Gram-negative (GN) bacteria and the development of multidrug resistance (MDR) among GN bacteria. We conducted a case-control study in order to identify factors associated with bacteremia due to multidrug-resistant Gram-negative (MDRGN) isolates in hematopoietic stem cell transplant recipients. Ten patients with MDRGN bacteremia were compared with 44 patients with GN bacteremia without MDR. Bacteremia due to Burkholderia or Stenotrophomonas sp was excluded from analysis (3 cases), because the possibility of intrinsical resistance. Infection due to MDRGN bacteria occurred in 2.9% of 342 hematopoietic stem cell transplant recipients. Klebsiella pneumoniae was the most frequent MDRGN (4 isolates), followed by Pseudomonas aeruginosa (3 isolates). Among non-MDRGN, P. aeruginosa was the most frequent agent (34%), followed by Escherichia coli (30%). The development of GN bacteremia during the empirical treatment of febrile neutropenia (breakthrough bacteremia) was associated with MDR (P < 0.001, odds ratio = 32, 95% confidence interval = 5_190) by multivariate analysis. Bacteremia due to MDRGN bacteria was associated with a higher death rate by univariate analysis (40 vs 9%; P = 0.03). We were unable to identify risk factors on admission or at the time of the first fever, but the occurrence of breakthrough bacteremia was strongly associated with MDRGN bacteria. An immediate change in the antibiotic regimen in such circumstances may improve the prognosis of these patients.
Resumo:
Tolerance to lipopolysaccharide (LPS) occurs when animals or cells exposed to LPS become hyporesponsive to a subsequent challenge with LPS. This mechanism is believed to be involved in the down-regulation of cellular responses observed in septic patients. The aim of this investigation was to evaluate LPS-induced monocyte tolerance of healthy volunteers using whole blood. The detection of intracellular IL-6, bacterial phagocytosis and reactive oxygen species (ROS) was determined by flow cytometry, using anti-IL-6-PE, heat-killed Staphylococcus aureus stained with propidium iodide and 2',7'-dichlorofluorescein diacetate, respectively. Monocytes were gated in whole blood by combining FSC and SSC parameters and CD14-positive staining. The exposure to increasing LPS concentrations resulted in lower intracellular concentration of IL-6 in monocytes after challenge. A similar effect was observed with challenge with MALP-2 (a Toll-like receptor (TLR)2/6 agonist) and killed Pseudomonas aeruginosa and S. aureus, but not with flagellin (a TLR5 agonist). LPS conditioning with 15 ng/mL resulted in a 40% reduction of IL-6 in monocytes. In contrast, phagocytosis of P. aeruginosa and S. aureus and induced ROS generation were preserved or increased in tolerant cells. The phenomenon of tolerance involves a complex regulation in which the production of IL-6 was diminished, whereas the bacterial phagocytosis and production of ROS was preserved. Decreased production of proinflammatory cytokines and preserved or increased production of ROS may be an adaptation to control the deleterious effects of inflammation while preserving antimicrobial activity.
Resumo:
Quarenta e quatro amostras de água mineral envasadas, de diferentes marcas, foram examinadas quanto à contaminação por coliformes totais, E.coli, Pseudomonas aeruginosa, Enterococos, Clostrídios sulfito redutores a 46ºC, de acordo com o preconizado pela RDC 54/00 do Ministério da Saúde. Empregou-se a metodologia da membrana filtrante. Em nenhuma das amostras foi detectada a presença de clostrídios sulfito redutores a 46ºC, Pseudomonas aeruginosa e enterococos. A contaminação por coliformes totais e E.coli, detectada em 25% e 20,4% das amostras, respectivamente, sugere falhas higiênicas ao longo do processo e contaminação fecal recente. Tais amostras apresentam-se em desacordo com os padrões microbiológicos legais estabelecidos pela Legislação Brasileira. Devem-se adotar práticas higiênicas rigorosas em todo processamento, com o objetivo de obter-se produtos seguros, já que tratamentos não podem ser utilizados visando a redução/eliminação da contaminação.
Resumo:
Rosemary leaf extracts were obtained by supercritical fluid extraction (SFE) and Soxhlet extraction. Their chemical compositions were evaluated by GC-MS. The extracts were analyzed for compounds reported in the literature as showing antimicrobial and antioxidant activities. The rosemary extracts were tested with regard to antioxidant (DPPH radical scavenging and total phenolic content - Folin-Denis reagent), antibacterial (Gram-positive bacteria - Staphylococcus aureus ATCC 25923 and Bacillus cereus ATCC 11778 - and Gram-negative bacteria - Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853) and antifungal (Candida albicans) activities. Antioxidant, antibacterial and antifungal activities of the SFE extracts were confirmed.
Resumo:
Este trabalho teve como objetivo determinar a atividade antimicrobiana e antioxidante do óleo essencial de Ho-Sho. O principal componente do óleo essencial obtido a partir de folhas da planta submetidas ao processo de hidrodestilação foi o linalol (80 a 95% m/m). O óleo essencial mostrou atividade antimicrobiana para todos os microrganismos testados, com exceção de Pseudomonas aeruginosa. A maior atividade antimicrobiana do óleo essencial sobre as bactérias testadas foi observada sobre Xanthomonas campestris (33,0 mm) e a menor sobre Yersinia enterocolitica (10,5 mm). Para a concentração inibitória mínima (CIM), observou-se que todos os microrganismos apresentaram-se susceptíveis ao óleo essencial de Ho-Sho. A variação das CIM para as bactérias Gram-positivas foi de 1,00 mg.mL-1 (Streptococcus mutans) a 1,75 mg.mL-1 (Staphylococcus epidermidis). Já a variação das CIM para as bactérias Gram-negativas foi de 0,625 mg.mL-1 (Citrobacter freundii) a 2,50 mg.mL-1 (Shigella flexneri). Os resultados obtidos na determinação da atividade antioxidante do óleo essencial demonstram que o percentual antioxidante aumenta proporcionalmente à concentração de óleo essencial adicionado, atingindo o valor máximo de 97,49% de atividade antioxidante para a concentração de 50000 μg.mL-1.
Resumo:
Cinnamomum zeylanicum Blume, Lauraceae, has long been known for having many biological properties. This study aimed to identify the constituents of the essential oil from C. zeylanicum leaves using GC-MS and to assess its inhibitory effect on Salmonella enterica, Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa based on MIC and MBC determination and kill-time study. Eugenol (73.27%) was the most prevalent compound in the essential oil followed by trans-β-cariophyllene (5.38%), linalool (3.31%), and alcohol cinamic acetate (2.53%). The results showed an interesting antibacterial activity of the oil with MIC ranging from 1.25 to 10 µL.mL-1. MBC values were in the range of 20 - 80 µL.mL-1. A concentration of 10 and 40 µL.mL-1 of the essential oil caused a fast and steady decrease in viable cell count (2 to 5 log cycles) of all assayed strains along 24 hours. A concentration of 40 µL.mL-1 of the oil provided a total elimination of the initial inocula of S. aureus after 2 hours. These results show the possibility of regarding the essential oil from C. zeylanicum leaves as alternative sources of antimicrobial compounds to be applied in food conservation systems.
Resumo:
Several essential oils of condiment and medicinal plants possess proven antimicrobial activity and are of important interest for the food industry. Therefore, the Minimum Inhibitory Concentrations (MIC) of those oils should be determined for various bacteria. MIC varies according to the oil used, the major compounds, and the physiology of the bacterium under study. In the present study, the essential oils of the plants Thymus vulgaris (time), Cymbopogon citratus (lemongrass) and Laurus nobilis (bay) were chemically quantified, and the MIC was determined on the bacteria Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, Listeria monocytogenes ATCC 19117, Salmonella enterica Enteritidis S64, and Pseudomonas aeruginosa ATCC 27853. The essential oil of C. citratus demonstrated bacterial activity at all concentrations tested and against all of the bacteria tested. The majority of essential oil compounds were geranial and neral. The major constituent of T. vulgaris was 1.8-cineol and of L. nobilis was linalool, which presented lower antibacterial activity, followed by 1.8-cineol. The Gram-negative bacteria demonstrated higher resistance to the use of the essential oils tested in this study. E. coli was the least sensitive and was inhibited only by the oils of C. citratus and L. nobilis.