986 resultados para Protozoa, Pathogenic
Resumo:
Trypanosome infections are often difficult to detect by conventional microscopy and their pleomorphy often confounds differential diagnosis. Molecular techniques are now being used to diagnose infections and to determine phylogenetic relationships between species. Complete small subunit rRNA gene sequences were determined for isolates of Trypanosoma chelodina from the Brisbane River tortoise (Emydura signata), the saw-shelled tortoise (Elseya latisternum), and the eastern snake-necked tortoise (Chelodina longicollis) from southeast Queensland, Australia. Partial sequence data were also obtained for T. binneyi from a platypus (Ornithorhynchus anatinus) from Tasmania. Phylogenetic relationships between T. chelodina, T. binneyi and other species were examined by maximum parsimony and likelihood methods. The Australian tortoise and platypus trypanosomes did not exhibit any close phylogenetic relationships with those of mammals, reptiles or amphibians, but were closely related to each other, and to fish trypanosomes. This contra-indicates their co-evolution with their vertebrate hosts but does not exclude co-evolution with different groups of invertebrate vectors, notably insects and leeches.
Resumo:
Samples of Macropodinium spp. were collected from 3 new macropodid species: from 21 of 28 (75%) black-striped wallabies (Macropus dorsalis); 10 of 11 (91%) swamp wallabies (Wallabia bicolor); and 22 of 43 (51%) Tasmanian pademelons (Thylogale billardierii). The examination of ciliate morphology by silver impregnation and scanning electron microscopy led to the redescription of the genus Macropodinium and the description of 4 new species: Ma. tricresta sp. nov. and Ma. spinosus sp. nov. from M. dorsalis; Ma. maira sp. nov. from T. billardierii; and M. bicolor sp. nov. from W. bicolor; each species was strictly host specific. Cellular orientation was reinterpreted on the basis of vestibular morphology and it is concluded that Macropodinium spp. are laterally rather than dorso-ventrally compressed. The striated groove is thus dorso-ventral rather than lateral. Oral ciliation consisted of up to three bands: an adoral band composed of oblique kineties; a vestibular band of longitudinal kineties; and a preoral band of longitudinal kineties. Somatic ciliation occurred in two longitudinal bands: a dense band composed of several parallel kineties on the left side of the dorso-ventral groove; and a sparse band composed of a single kinety on the right internal side of the dorso-ventral groove. Few structures were homologous to those of other litostome ciliates, and thus the relationship of Macropodinium to other litostomes cannot yet be clearly defined.
Resumo:
During the course of transmission electron microscopic studies of adult Ancylostoma caninum removed from a dog, several Giardia trophozoites were found in sections of the buccal cavity, oesophagus and intestine of several hookworms. Although the protozoa appeared viable, this unusual finding probably represents accidental uptake by, rather than an established infection of, the hookworm. It is feasible, however, that the trophozoites might have survived and even multiplied in this aberrant site. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Stomatogenesis and the cell division cycle was investigated for Macropodinium yalanbense Dehority, 1996 from Macropus giganteus using light and electron microscopy. Macropodinium spp. are endosymbiotic ciliates found only in the stomachs of macropodid marsupials. Stomatogenesis proceeds through 4 stages: initial formation of a transverse division suture; formation of the preoral field and formation of vestibular kineties in an internal pouch; extension of vestibulum posteriorly and external formation of new adoral kineties; and extension of somatic and adoral kineties accompanying dorsal and ventral constriction of the cell. Karyokinesis and formation of the new cytoproct occur immediately prior to cytokinesis. Comparison with other litostome ciliates shows that the formation of new vestibular kineties is most similar to that of the entodiniomorphs, formation of adoral kineties is most similar to that of the haptorians and formation of the somatic kineties to that of the vestibuliferans. The phylogenetic affinities of Macropodinium are thus difficult to infer from the ontogeny of organelle systems. Stomatogenesis of the adoral kineties is either epiapokinetal or a new type of cryptotelokinetal whereas the vestibular kineties are formed by either endoapokinetal or cryptotelokinetal processes. No other ciliate has been observed to utilise 2 types of stomatogenesis in its division cycle.
Resumo:
Urethral epithelial cells are invaded by Neisseria gonorrhoeae during gonococcal infection in men. To understand further the mechanisms of gonococcal entry into host cells, we used the primary human urethral epithelial cells (PHUECs) tissue culture system recently developed by our laboratory. These studies showed that human asialoglycoprotein receptor (ASGP-R) and the terminal lactosamine of lacto-N-neotetraose-expressing gonococcal lipooligosaccharide (LOS) play an important role in invasion of PHUECs. Microscopy studies showed that ASGP-R traffics to the cell surface after gonococcal challenge. Co-localization of ASGP-R with gonococci was observed. As ASGP-R-mediated endocytosis is clathrin dependent, clathrin localization in PHUECs was examined after infection. Infected PHUECs showed increased clathrin recruitment and co-localization of clathrin and gonococci. Preincubating PHUECs in 0.3 M sucrose or monodansylcadaverine (MDC), which both inhibit clathrin-coated pit formation, resulted in decreased invasion. N. gonorrhoeae strain 1291 produces a single LOS glycoform that terminates with Gal(beta1-4)Glc-Nac(beta1-3)Gal(beta1-4)Glc (lacto-N-neotetraose). Invasion assays showed that strain 1291 invades significantly more than four isogenic mutants expressing truncated LOS. Sialylation of strain 1291 LOS inhibited invasion significantly. Preincubation of PHUECs in asialofetuin (ASF), an ASGP-R ligand, significantly reduced invasion. A dose-response reduction in invasion was observed in PHUECs preincubated with increasing concentrations of NaOH-deacylated 1291 LOS. These studies indicated that an interaction between lacto-N-neotetraose-terminal LOS and ASGP-R allows gonococcal entry into PHUECs.
Resumo:
Corticosteroid-binding globulin is a 383-amino acid glycoprotein that serves a hormone transport role and may have functions related to the stress response and inflammation. We describe a 39-member Italian-Australian family with a novel complete loss of function (null) mutation of the corticosteroid-binding globulin gene. A second, previously described, mutation (Lyon) segregated independently in the same kindred. The novel exon 2 mutation led to a premature termination codon corresponding to residue -12 of the procorticosteroid-binding globulin molecule (c.121G->A). Among 32 family members there were 3 null homozygotes, 19 null heterozygotes, 2 compound heterozygotes, 3 Lyon heterozygotes, and 5 individuals without corticosteroid-binding globulin mutations. Plasma immunoreactive corticosteroid-binding globulin was undetectable in null homozygotes, and mean corticosteroid-binding globulin levels were reduced by approximately 50% at 18.7 ± 1.3 µg/ml (reference range, 30–52 µg/ml) in null heterozygotes. Morning total plasma cortisol levels were less than 1.8 µg/dl in homozygotes and were positively correlated to the plasma corticosteroid-binding globulin level in heterozygotes. Homozygotes and heterozygote null mutation subjects had a high prevalence of hypotension and fatigue. Among 19 adults with the null mutation, the systolic blood pressure z-score was 12.1 ± 3.5; 11 of 19 subjects (54%) had a systolic blood pressure below the third percentile. The mean diastolic blood pressure z-score was 18.1 ± 3.4; 8 of 19 subjects (42%) had a diastolic blood pressure z-score below 10. Idiopathic chronic fatigue was present in 12 of 14 adult null heterozygote subjects (86%) and in 2 of 3 null homozygotes. Five cases met the Centers for Disease Control criteria for chronic fatigue syndrome. Fatigue questionnaires revealed scores of 25.1 ± 2.5 in 18 adults with the mutation vs. 4.2 ± 1.5 in 23 healthy controls (P < 0.0001). Compound heterozygosity for both mutations resulted in plasma cortisol levels comparable to those in null homozygotes. Abnormal corticosteroid-binding globulin concentrations or binding affinity may lead to the misdiagnosis of isolated ACTH deficiency. The mechanism of the association between fatigue and relative hypotension is not established by these studies. As idiopathic fatigue disorders are associated with relatively low plasma cortisol, abnormalities of corticosteroid-binding globulin may be pathogenic.
Resumo:
Rheumatic fever (RF)/rheumatic heart disease (RHD) and post-streptococcal glomerulonephritis are thought to be autoimmune diseases, and follow group A streptococcal (GAS) infection. Different GAS M types have been associated with rheumatogenicity or nephritogenicity and categorized into either of two distinct classes (I or II) based on amino acid sequences present within the repeat region ('C' repeats) of the M protein. Sera from ARF patients have previously been shown to contain elevated levels of antibodies to the class I-specific epitope and myosin with the class I-specific antibodies also being cross-reactive to myosin, suggesting a disease association. This study shows that immunoreactivity of the class I-specific peptide and myosin does not differ between controls and acute RF (ARF)/RHD in populations that are highly endemic for GAS, raising the possibility that the association is related to GAS exposure, not the presence of ARF/RHD. Peptide inhibition studies suggest that the class I epitope may be conformational and residue 10 of the peptide is critical for antibody binding. We demonstrate that correlation of antibody levels between the class I and II epitope is due to class II-specific antibodies recognizing a common epitope with class I which is contained within the sequence RDL-ASRE. Our results suggest that antibody prevalence to class I and II epitopes and myosin is associated with GAS exposure, and that antibodies to these epitopes are not an indicator of disease nor a pathogenic factor in endemic populations.
Resumo:
The relative potential of the pathogenic fungi Beauveria bassiana and Zoophthora radicans for use as autodisseminated biological control agents of the diamondback moth (Plutella xylostella) was compared. The LC50 of B. bassiana conidia to third instar larvae was 499 conidia/mm(2) of leaf surface and individual cadavers of mycosed fourth instar larvae yielded a mean of 67.5 X 10(6) (+/- 7.5 x 10(6)) conidia. All concentrations of B. bassiana tested in inoculation chambers (0.24, 2.4, and 6.2 mug/mm(2)) induced 100% mortality in adult male moths within 7 days. The times to death and sporulation were concentration and exposure duration dependent. A standard procedure for inoculating male moths resulted in > 85% mortality from Z. radicans and > 93% mortality from B. bassiana. Pairing of inoculated males with clean moths of both sexes yielded higher rates of passive transmission of B. bassiana than Z. radicans, but there was no evidence for sexual transmission of either pathogen. Similarly, B. bassiana was more effectively transmitted from inoculated male moths to larvae foraging on whole plants. Single sporulating cadavers producing B. bassiana or Z. radicans conidia placed on plants infested with larvae resulted in a similar rate of transmission for both pathogens. However, an increase of the density of sporulating cadavers from one to three/plant increased Z. radicans transmission (greater than fourfold) but had no effect on B. bassiana transmission. Simultaneous inoculations of larvae with conidia of both fungi reduced the mortality induced by each pathogen, the reduction being most acute for B. bassiana-induced mortality. Inoculation of adults with both fungi showed that, at concentrations required for effective passive transmission to larvae, B. bassiana severely inhibited Z. radicans mycosis in adults. (C) 2001 Academic Press.
Resumo:
High levels of mortality in the Mediterranean bath sponge industry have raised concerns for the future of sponge farms. Healthy sponges feed predominantly on bacteria, and many harbour a wide diversity of inter- and extra-cellular symbiotic bacteria. Here we describe the first isolation and description of a pathogenic bacterium from an infected marine sponge. Microbiological examination of tissue necrosis in the Great Barrier Reef sponge Rhopaloeides odorabile resulted in isolation of the bacterial strain NW4327. Sponges infected with strain NW4327 exhibited high levels of external tissue necrosis, and the strain was re-isolated from infected sponges. A single morphotype, which had burrowed through the collagenous spongin fibres causing severe necrosis, was observed microscopically. Strain NW4327 was capable of degrading commercial preparations of azo-collagen, providing further evidence of its involvement in spongin fibre necrosis, Strain NW4327 disrupted the microbial community associated with R. odorabile and was able to infect and kill healthy sponge tissue. 16S rRNA sequence analysis revealed that strain NW4327 is a novel member of the alpha-proteobacteria.
Resumo:
Social bees have a diverse fauna of symbiotic mesostigmatic mites, including highly pathogenic parasites of the honeybee, but there are few reports of Mesostigmata phoretic on or inhabiting the nests of solitary or communal, ground-nesting bees. In south-eastern Australia, however, native bees in the family Halictidae carry what appears to be a substantial radiation of host-specific mesostigmatans in the family Laelapidae. Herein, we redescribe the obscure genus Raymentia , associated with Lasioglossum (Parasphecodes ) spp. bees (Halictidae) and describe two new species, R. eickwortiana from L. lacthium (Smith) and R. walkeriana from L. atronitens (Cockerell). The type species, R. anomala Womersley, is associated with L. altichum (Smith). In addition, we review the mites known to be associated with Australian bees, provide a key to differentiate them, and describe and illustrate acarinaria of the Halictinae. We also report on the first occurrences in Australia of the genera Trochometridium Cross (Heterostigmata: Trochometridiidae), from L. eremaean Walker (Halictidae), and Cheletophyes Oudemans (Prostigmata: Cheyletidae) from Xylocopa Latreille (Xylocopinae), and on the previously unknown association between a Neocypholaelaps Vitzthum (Mesostigmata: Ameroseiidae) and Lipotriches tomentifera (Friese) (Halictidae).
Resumo:
The ultrastructural features of the holotrichous ciliates inhabiting macropodid maruspials were investigated to resolve their morphological similarity to other trichostome ciliates with observed differences in their small subunit rRNA gene sequences. The ultrastructure of Amylovorax dehorityi nov. comb. (formerly Dasytricha dehorityi) was determined by transmission electron microscopy. The somatic kineties are composed of monokinetids whose microtubules show a typical litostome pattern. The somatic cortex is composed of ridges which separate kinety rows, granular ectoplasm and a basal layer of hydrogenosomes lining the tela corticalis. The vestibulum is an invagination of the pellicle lined down one side with kineties (invaginated extensions of the somatic kineties); transverse tubules line the surface of the vestibulum and small nematodesmata surround it forming a cone-like network of struts. Cytoplasmic organelles include hydrogenosomes, irregularly shaped contractile vacuoles surrounded by a sparse spongioplasm, food vacuoles containing bacteria and large numbers of starch granules. This set of characteristics differs sufficiently from those of isotrichids and members of the genus Dasytricha to justify the erection of a new genus (Amylovorax) and a new family (Amylovoracidae). Dasytricha dehorityi, D. dogieli and D. mundayi are reassigned to the new genus Amylovorax and a new species A. quokka is erected. While the gross morphological similarities between Amylovorax and Dasytricha may be explained by convergent evolution, ultrastructural features indicate that these two genera have probably diverged independently from haptorian ancestors by successive reduction of the cortical and vestibular support structures.
Resumo:
A comprehensive study using virological and serological approaches was carried out to determine the status of live healthy mallard ducks (Anas platyrhynchos) in New Zealand for infections with avian paramyxoviruses (APMV) and influenza viruses (AIV). Thirty-three viruses isolated from 321 tracheal and cloacal swabs were characterized as: 6 AIV (two H5N2 and four H4N6), 10 APMV-1 and 17 APMV-4. Of 335 sera samples tested for AIV antibodies, 109 (32.5%) sera were positive by nucleoprotein-blocking ELISA (NP-B-ELISA). Serum samples (315) were examined for antibody to APMV-1, -2, -3, -4, -6, -7, -8, -9 by the haemagglutination inhibition test. The largest number of reactions, with titres up to greater than or equal to 1/64, was to APMV-1 (93.1%), followed by APMV-6 (85.1%), APMV-8 (56%), APMV-4 (51.7%), APMV-7 (47%), APMV-9 (15.9%), APMV-2 (13.3%) and APMV-3 (6.0%). All of the H5N2 isolates of AIV and the APMV-1 isolates from this and earlier New Zealand studies had low pathogenicity indices assessed by the Intravenous Pathogenicity Index (IVPI) with the result 0.00 and Intracerebral Pathogenicity Index (ICPI) with results 0.00-0.16. Partial genomic and antigenic analyses were also consistent with the isolates being non-pathogenic. Phylogenetic analysis of the 10 APMV-1 isolates showed 9 to be most similar to the reference APMV-1 strain D26/76 originally isolated in Japan and also to the Que/66 strain, which was isolated in Australia. The other isolate was very similar to a virus (MC 110/77) obtained from a shelduck in France.
Resumo:
This study confirms that Australian isolates of Sclerotinia minor can produce fertile apothecia and further demonstrates that ascospores collected from these apothecia are pathogenic to sunflower (Helianthus annuus). Sunflower is a known host of the related fungus Sclerotinia sclerotiorum and is grown in some regions where S. minor is known to occur. Head rot symptoms were produced following inoculation with S. minor ascospores. Predictive modeling using CLIMEX software suggested that conditions suitable for carpogenic germination of S. minor probably occur in Australia particularly in southern regions. Carpogenic germination is probably a rare event in northern regions and, if it does occur, probably does not coincide with anthesis in sunflower crops, therefore allowing disease escape.
Resumo:
Chemotherapy is central to the control of many parasite infections of both medical and veterinary importance. However, control has been compromised by the emergence of drug resistance in several important parasite species. Such parasites cover a broad phylogenetic range and include protozoa, helminths and arthropods. In order to achieve effective parasite control in the future, the recognition and diagnosis of resistance will be crucial. This demand for early, accurate diagnosis of resistance to specific drugs in different parasite species can potentially be met by modern molecular techniques. This paper summarises the resistance status of a range of important parasites and reviews the available molecular techniques for resistance diagnosis. Opportunities for applying successes in some species to other species where resistance is less well understood are explored. The practical application of molecular techniques and the impact of the technology on improving parasite control are discussed. (C) 2002 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
The Trypanosomatidae comprise a large group of parasitic protozoa, some of which cause important diseases in humans. These include Tryanosoma brucei (the causative agent of African sleeping sickness and nagana in cattle), Trypanosoma cruzi (the causative agent of Chagas' disease in Central and South America), and Leishmania spp. (the causative agent of visceral and [muco]cutaneous leishmaniasis throughout the tropics and subtropics). The cell surfaces of these parasites are covered in complex protein- or carbohydrate-rich coats that are required for parasite survival and infectivity in their respective insect vectors and mammalian hosts. These molecules are assembled in the secretory pathway. Recent advances in the genetic manipulation of these parasites as well as progress with the parasite genome projects has greatly advanced our understanding of processes that underlie secretory transport in trypanosomatids. This article provides an overview of the organization of the trypanosomatid secretory pathway and connections that exist with endocytic organelles and multiple lytic and storage vacuoles. A number of the molecular components that are required for vesicular transport have been identified, as have some of the sorting signals that direct proteins to the cell surface or organelles it? the endosome-vacuole system. Finally, the subcellular organization of the major glycosylation pathways in these parasites is reviewed. Studies on these highly divergent eukaryotes provide important insights into the molecular processes underlying secretory transport that arose very early in eukaryotic evolution. They also reveal unusual or novel aspects of secretory), transport and protein glycosylation that may be exploited in developing new antiparasite drugs.