962 resultados para Prostate-specific Antigen
Resumo:
Currently, MVA virus vectors carrying HIV-1 genes are being developed as HIV-1/AIDS prophylactic/therapeutic vaccines. Nevertheless, little is known about the impact of these vectors on human dendritic cells (DC) and their capacity to present HIV-1 antigens to human HIV-specific T cells. This study aimed to characterize the interaction of MVA and MVA expressing the HIV-1 genes Env-Gag-Pol-Nef of clade B (referred to as MVA-B) in human monocyte-derived dendritic cells (MDDC) and the subsequent processes of HIV-1 antigen presentation and activation of memory HIV-1-specific T lymphocytes. For these purposes, we performed ex vivo assays with MDDC and autologous lymphocytes from asymptomatic HIV-infected patients. Infection of MDDC with MVA-B or MVA, at the optimal dose of 0.3 PFU/MDDC, induced by itself a moderate degree of maturation of MDDC, involving secretion of cytokines and chemokines (IL1-ra, IL-7, TNF-α, IL-6, IL-12, IL-15, IL-8, MCP-1, MIP-1α, MIP-1β, RANTES, IP-10, MIG, and IFN-α). MDDC infected with MVA or MVA-B and following a period of 48 h or 72 h of maturation were able to migrate toward CCL19 or CCL21 chemokine gradients. MVA-B infection induced apoptosis of the infected cells and the resulting apoptotic bodies were engulfed by the uninfected MDDC, which cross-presented HIV-1 antigens to autologous CD8+ T lymphocytes. MVA-B-infected MDDC co-cultured with autologous T lymphocytes induced a highly functional HIV-specific CD8+ T cell response including proliferation, secretion of IFN-γ, IL-2, TNF-α, MIP-1β, MIP-1α, RANTES and IL-6, and strong cytotoxic activity against autologous HIV-1-infected CD4+ T lymphocytes. These results evidence the adjuvant role of the vector itself (MVA) and support the clinical development of prophylactic and therapeutic anti-HIV vaccines based on MVA-B.
Resumo:
Currently, MVA virus vectors carrying HIV-1 genes are being developed as HIV-1/AIDS prophylactic/therapeutic vaccines. Nevertheless, little is known about the impact of these vectors on human dendritic cells (DC) and their capacity to present HIV-1 antigens to human HIV-specific T cells. This study aimed to characterize the interaction of MVA and MVA expressing the HIV-1 genes Env-Gag-Pol-Nef of clade B (referred to as MVA-B) in human monocyte-derived dendritic cells (MDDC) and the subsequent processes of HIV-1 antigen presentation and activation of memory HIV-1-specific T lymphocytes. For these purposes, we performed ex vivo assays with MDDC and autologous lymphocytes from asymptomatic HIV-infected patients. Infection of MDDC with MVA-B or MVA, at the optimal dose of 0.3 PFU/MDDC, induced by itself a moderate degree of maturation of MDDC, involving secretion of cytokines and chemokines (IL1-ra, IL-7, TNF-α, IL-6, IL-12, IL-15, IL-8, MCP-1, MIP-1α, MIP-1β, RANTES, IP-10, MIG, and IFN-α). MDDC infected with MVA or MVA-B and following a period of 48 h or 72 h of maturation were able to migrate toward CCL19 or CCL21 chemokine gradients. MVA-B infection induced apoptosis of the infected cells and the resulting apoptotic bodies were engulfed by the uninfected MDDC, which cross-presented HIV-1 antigens to autologous CD8+ T lymphocytes. MVA-B-infected MDDC co-cultured with autologous T lymphocytes induced a highly functional HIV-specific CD8+ T cell response including proliferation, secretion of IFN-γ, IL-2, TNF-α, MIP-1β, MIP-1α, RANTES and IL-6, and strong cytotoxic activity against autologous HIV-1-infected CD4+ T lymphocytes. These results evidence the adjuvant role of the vector itself (MVA) and support the clinical development of prophylactic and therapeutic anti-HIV vaccines based on MVA-B.
Resumo:
In mice, vaccination with high peptide doses generates higher frequencies of specific CD8+ T cells, but with lower avidity compared to vaccination with lower peptide doses. To investigate the impact of peptide dose on CD8+ T cell responses in humans, melanoma patients were vaccinated with 0.1 or 0.5 mg Melan-A/MART-1 peptide, mixed with CpG 7909 and Incomplete Freund's adjuvant. Neither the kinetics nor the amplitude of the Melan-A-specific CD8+ T cell responses differed between the two vaccination groups. Also, CD8+ T cell differentiation and cytokine production ex vivo were similar in the two groups. Interestingly, after low peptide dose vaccination, Melan-A-specific CD8+ T cells showed enhanced degranulation upon peptide stimulation, as assessed by CD107a upregulation and perforin release ex vivo. In accordance, CD8+ T cell clones derived from low peptide dose-vaccinated patients showed significantly increased degranulation and stronger cytotoxicity. In parallel, Melan-A-specific CD8+ T cells and clones from low peptide dose-vaccinated patients expressed lower CD8 levels, despite similar or even stronger binding to tetramers. Furthermore, CD8+ T cell clones from low peptide dose-vaccinated patients bound CD8 binding-deficient tetramers more efficiently, suggesting that they may express higher affinity TCRs. We conclude that low peptide dose vaccination generated CD8+ T cell responses with stronger cytotoxicity and lower CD8 dependence.
Resumo:
Deficiency of protease-activated receptor-2 (PAR2) modulates inflammation in several models of inflammatory and autoimmune disease, although the underlying mechanism(s) are not understood. PAR2 is expressed on endothelial and immune cells, and is implicated in dendritic cell (DC) differentiation. We investigated in vivo the impact of PAR2 activation on DCs and T cells in PAR2 wild-type (WT) and knockout (KO) mice using a specific PAR2 agonist peptide (AP2). PAR2 activation significantly increased the frequency of mature CD11c(high) DCs in draining lymph nodes 24 hr after AP2 administration. Furthermore, these DCs exhibited increased expression of major histocompatibility complex (MHC) class II and CD86. A significant increase in activated (CD44(+) CD62(-)) CD4(+) and CD8(+) T-cell frequencies was also observed in draining lymph nodes 48 hr after AP2 injection. No detectable change in DC or T-cell activation profiles was observed in the spleen. The influence of PAR2 signalling on antigen transport to draining lymph nodes was assessed in the context of delayed-type hypersensitivity. PAR2 WT mice that were sensitized by skin-painting with fluorescein isothiocyanate (FITC) to induce delayed-type hypersensitivity possessed elevated proportion of FITC(+) DCs in draining lymph nodes 24 hr after FITC painting when compared with PAR2 KO mice (0.95% versus 0.47% of total lymph node cells). Collectively, these results demonstrate that PAR2 signalling promotes DC trafficking to the lymph nodes and subsequent T-cell activation, and thus provides an explanation for the pro-inflammatory effect of PAR2 in animal models of inflammation.
Resumo:
NlmCategory="UNASSIGNED">The efficacy of antitumoral responses can be increased using combinatorial vaccine strategies. We recently showed that vaccination could be optimized by local administration of diverse molecular or bacterial agents to target and augment antitumoral CD8 T cells in the genital mucosa (GM) and increase regression of cervical cancer in an animal model. Non muscle-invasive bladder cancer is another disease that is easily amenable to local therapies. In contrast to data obtained in the GM, in this study we show that intravesical (IVES) instillation of synthetic toll-like receptor (TLR) agonists only modestly induced recruitment of CD8 T cells to the bladder. However, IVES administration of Ty21a, a live bacterial vaccine against typhoid fever, was much more effective and increased the number of total and vaccine-specific CD8 T cells in the bladder approximately 10 fold. Comparison of chemokines induced in the bladder by either CpG (a TLR-9 agonist) or Ty21a highlighted the preferential increase in complement component 5a, CXCL5, CXCL2, CCL8, and CCL5 by Ty21a, suggesting their involvement in the attraction of T cells to the bladder. IVES treatment with Ty21a after vaccination also significantly increased tumor regression compared to vaccination alone, resulting in 90% survival in an orthotopic murine model of bladder cancer expressing a prototype tumor antigen. Our data demonstrate that combining vaccination with local immunostimulation may be an effective treatment strategy for different types of cancer and also highlight the great potential of the Ty21a vaccine, which is routinely used worldwide, in such combinatorial therapies.
Resumo:
BACKGROUND: Transmission of mucosal pathogens relies on their ability to bind to the surfaces of epithelial cells, to cross this thin barrier, and to gain access to target cells and tissues, leading to systemic infection. This implies that pathogen-specific immunity at mucosal sites is critical for the control of infectious agents using these routes to enter the body. Although mucosal delivery would ensure the best onset of protective immunity, most of the candidate vaccines are administered through the parenteral route. OBJECTIVE: The present study evaluates the feasibility of delivering the chemically bound p24gag (referred to as p24 in the text) HIV antigen through secretory IgA (SIgA) in nasal mucosae in mice. RESULTS: We show that SIgA interacts specifically with mucosal microfold cells present in the nasal-associated lymphoid tissue. p24-SIgA complexes are quickly taken up in the nasal cavity and selectively engulfed by mucosal dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin-positive dendritic cells. Nasal immunization with p24-SIgA elicits both a strong humoral and cellular immune response against p24 at the systemic and mucosal levels. This ensures effective protection against intranasal challenge with recombinant vaccinia virus encoding p24. CONCLUSION: This study represents the first example that underscores the remarkable potential of SIgA to serve as a carrier for a protein antigen in a mucosal vaccine approach targeting the nasal environment.
Resumo:
It is well established that cytotoxic T lymphocytes play a pivotal role in the protection against intracellular pathogens and tumour cells. Such protective immune responses rely on the specific T cell receptor (TCR)-mediated recognition by CD8 T cells of small antigenic peptides presented in the context of class-I Major Histocompatibility Complex molecules (pMHCs) on the surface of infected or malignant cells. The strength (affinity/avidity) of this interaction is a major correlate of protection. Although tumour-reactive CD8 T cells can be observed in cancer patients, anti-tumour immune responses are often ineffective in controlling or eradicating the disease due to the relative low TCR affinity of these cells. To overcome this limitation, tumour-specific CD8 T cells can be genetically modified to express TCRs of improved binding strength against a defined tumour antigen before adoptive cell transfer into cancer patients. We previously generated a panel of TCRs specific for the cancer-testis antigen NY-ESO-l,57.165 with progressively increased affinities for the pMHC complex, thus providing us with a unique tool to investigate the causal link between the surface expression of such TCRs and T cell activation and function. We recently demonstrated that anti-tumour CD8 T cell reactivity could only be improved within physiological affinity limits, beyond which drastic functional declines were observed, suggesting the presence of multiple regulatory mechanisms limiting T cell activation and function in a TCR affinity-dependent manner. The overarching goal of this thesis was (i) to assess the precise impact of TCR affinity on T cell activation and signalling at the molecular level and (ii) to gain further insights on the mechanisms that regulate and delimitate maximal/optimized CD8 T cell activation and signalling. Specifically, by combining several technical approaches we characterized the activation status of proximal (i.e. CD3Ç, Lek, and ZAP-70) and distal (i.e. ERK1/2) signalling molecules along the TCR affinity gradient. Moreover, we assessed the extent of TCR downmodulation, a critical step for initial T cell activation. CD8 T cells engineered with the optimal TCR affinity variants showed increased activation levels of both proximal and distal signalling molecules when compared to the wild-type T cells. Our analyses also highlighted the "paradoxical" status of tumour-reactive CD8 T cells bearing very high TCR affinities, which retained strong proximal signalling capacity and TCR downmodulation, but were unable to propagate signalling distally (i.e. pERKl/2), resulting in impaired cell-mediated functions. Importantly, these very high affinity T cells displayed maximal levels of SHP-1 and SHP-2 phosphatases, two negative regulatory molecules, and this correlated with a partial pERKl/2 signalling recovery upon pharmacological SHP-l/SHP-2 inhibition. These findings revealed the putative presence of inhibitory regulators of the TCR signalling cascade acting very rapidly following tumour-specific stimulation. Moreover, the very high affinity T cells were only able to transiently express enhanced proximal signalling molecules, suggesting the presence of an additional level of regulation that operates through the activation of negative feedback loops over time, limiting the duration of the TCR-mediated signalling. Overall, the determination of TCR-pMHC binding parameters eliciting optimal CD8 T cell activation, signalling, and effector function while guaranteeing high antigen specificity, together with the identification of critical regulatory mechanisms acting proximally in the TCR signalling cascade, will directly contribute to optimize and support the development of future TCR-based adoptive T cell strategies for the treatment of malignant diseases. -- Les lymphocytes T CD8 cytotoxiques jouent un rôle prédominant dans la protection contre les pathogènes intracellulaires et les cellules tumorales. Ces réponses immunitaires dépendent de la spécificité avec laquelle les récepteurs T (TCR) des lymphocytes CD8 reconnaissent les peptides antigéniques présentés par les molécules du complexe Majeur de Histocompatibilité de classe I (pCMH) à la surface des cellules infectées ou malignes. La force (ou affinité/avidité) de l'interaction du TCR-pCMH est un corrélat majeur de protection. Les réponses immunitaires sont cependant souvent inefficaces et ne permettent pas de contrôler ou d'éliminer les cellules tumorales chez les patients atteint du cancer, et ce à cause de la relative faible reconnaissance des TCRs exprimés par les lymphocytes T CD8 envers les antigènes tumoraux. Afin de surmonter cette limitation, les cellules T anti-tumorales peuvent être génétiquement modifiées en les dotant de TCRs préalablement optimisés afin d'augmenter leur reconnaissance ou affinité contre les antigènes tumoraux, avant leur ré¬infusion dans le patient. Nous avons récemment généré des cellules T CD8 exprimant un panel de TCRs spécifiques pour l'antigène tumoral NY-ESO-l157.16J avec des affinités croissantes, permettant ainsi d'investiguer la causalité directe entre l'affinité du TCR-pCMH et la fonction des cellules T CD8. Nous avons démontré que la réactivité anti-tumorale pouvait être améliorée en augmentant l'affinité du TCR dans une intervalle physiologique, mais au delà duquel nous observons un important déclin fonctionnel. Ces résultats suggèrent la présence de mécanismes de régulation limitant l'activation des cellules T de manière dépendante de l'affinité du TCR. Le but de cette thèse a été (i) de définir l'impact précis de l'affinité du TCR sur l'activation et la signalisation des cellules T CD8 au niveau moléculaire et (ii) d'acquérir de nouvelles connaissances sur les mécanismes qui régulent et délimitent l'activation et la signalisation maximale des cellules T CD8 optimisées. Spécifiquement, en combinant plusieurs approches technologiques, nous avons caractérisé l'état d'activation de différentes protéines de la voie de signalisation proximale (CD3Ç, Lek et ZAP-70) et distale (ERK1/2) le long du gradient d'affinité du TCR, ainsi que l'internalisation du TCR, une étape clef dans l'activation initiale des cellules T. Les lymphocytes T CD8 exprimant des TCRs d'affinité optimale ont montré des niveaux d'activation augmentés des molécules proximales et distales par rapport aux cellules de type sauvage (wild-type). Nos analyses ont également mis en évidence un paradoxe chez les cellules T CD8 équipées avec des TCRs de très haute affinité. En effet, ces cellules anti-tumorales sont capables d'activer leurs circuits biochimiques au niveau proximal et d'internaliser efficacement leur TCR, mais ne parviennent pas à propager les signaux biochimiques dépendants du TCR jusqu'au niveau distal (via phospho-ERKl/2), avec pour conséquence une limitation de leur capacité fonctionnelle. Finalement, nous avons démontré que SHP-1 et SHP-2, deux phosphatases avec des propriétés régulatrices négatives, étaient majoritairement exprimées dans les cellules T CD8 de très hautes affinités. Une récupération partielle des niveaux d'activation de ERK1/2 a pu être observée après l'inhibition pharmacologique de ces phosphatases. Ces découvertes révèlent la présence de régulateurs moléculaires qui inhibent le complexe de signalisation du TCR très rapidement après la stimulation anti-tumorale. De plus, les cellules T de très hautes affinités ne sont capables d'activer les molécules de la cascade de signalisation proximale que de manière transitoire, suggérant ainsi un second niveau de régulation via l'activation de mécanismes de rétroaction prenant place progressivement au cours du temps et limitant la durée de la signalisation dépendante du TCR. En résumé, la détermination des paramètres impliqués dans l'interaction du TCR-pCMH permettant l'activation de voies de signalisation et des fonctions effectrices optimales ainsi que l'identification des mécanismes de régulation au niveau proximal de la cascade de signalisation du TCR contribuent directement à l'optimisation et au développement de stratégies anti-tumorales basées sur l'ingénierie des TCRs pour le traitement des maladies malignes.
Resumo:
Prostate cancers form a heterogeneous group of diseases and there is a need for novel biomarkers, and for more efficient and targeted methods of treatment. In this thesis, the potential of microarray data, RNA interference (RNAi) and compound screens were utilized in order to identify novel biomarkers, drug targets and drugs for future personalized prostate cancer therapeutics. First, a bioinformatic mRNA expression analysis covering 9873 human tissue and cell samples, including 349 prostate cancer and 147 normal prostate samples, was used to distinguish in silico prevalidated putative prostate cancer biomarkers and drug targets. Second, RNAi based high-throughput (HT) functional profiling of 295 prostate and prostate cancer tissue specific genes was performed in cultured prostate cancer cells. Third, a HT compound screen approach using a library of 4910 drugs and drug-like molecules was exploited to identify potential drugs inhibiting prostate cancer cell growth. Nine candidate drug targets, with biomarker potential, and one cancer selective compound were validated in vitro and in vivo. In addition to androgen receptor (AR) signaling, endoplasmic reticulum (ER) function, arachidonic acid (AA) pathway, redox homeostasis and mitosis were identified as vital processes in prostate cancer cells. ERG oncogene positive cancer cells exhibited sensitivity to induction of oxidative and ER stress, whereas advanced and castrate-resistant prostate cancer (CRPC) could be potentially targeted through AR signaling and mitosis. In conclusion, this thesis illustrates the power of systems biological data analysis in the discovery of potential vulnerabilities present in prostate cancer cells, as well as novel options for personalized cancer management.
Resumo:
Recurrent castration resistant prostate cancer remains a challenge for cancer therapies and novel treatment options in addition to current anti-androgen and mitosis inhibitors are needed. Aberrations in epigenetic enzymes and chromatin binding proteins have been linked to prostate cancer and they may form a novel class of drug targets in the future. In this thesis we systematically evaluated the epigenenome as a prostate cancer drug target. We functionally silenced 615 known and putative epigenetically active protein coding genes in prostate cancer cell lines using high throughput RNAi screening and evaluated the effects on cell proliferation, androgen receptor (AR) expression and histone patterns. Histone deacetylases (HDACs) were found to regulate AR expression. Furthermore, HDAC inhibitors reduced AR signaling and inhibited synergistically with androgen deprivation prostate cancer cell proliferation. In particular, TMPRSS2- EGR fusion gene positive prostate cancer cell lines were sensitive to combined HDAC and AR inhibition, which may partly be related to the dependency of a fusion gene induced epigenetic pathway. Histone demethylases (HDMs) were identified to regulate prostate cancer cell line proliferation. We discovered a novel histone JmjC-domain histone demethylase PHF8 to be highly expressed in high grade prostate cancers and mediate cell proliferation, migration and invasion in in vitro models. Additionally, we explored novel HDM inhibitor chemical structures using virtual screening methods. The structures best fitting to the active pocket of KDM4A were tested for enzyme inhibition and prostate cancer cell proliferation activity in vitro. In conclusion, our results show that prostate cancer may efficiently be targeted with combined AR and HDAC inhibition which is also currently being tested in clinical trials. HDMs were identified as another feasible novel drug target class. Future studies in representative animal models and development of specific inhibitors may reveal HDMs full potential in prostate cancer therapy
Resumo:
Interest in oral tolerance has been renewed in the last few years as a possibility of intervention in human autoimmune diseases. An obstacle in this direction is that, although easily induced in animals virgin of contact with the antigen, oral tolerance becomes hard to induce in previously immunized animals. The present results show that there is an early period after primary immunization in which prolonged oral exposure to the antigen may arrest ongoing immune responses. Beyond this period, oral exposures to the antigen become ineffective and may actually boost immune responses. The end of the susceptible period coincides with the emergence of free specific antibodies in serum. However, the previous administration of purified anti-ovalbumin antibodies (40 µg) was unable to block the induction of oral tolerance to ovalbumin in normal mice
Resumo:
The surgical specimens from 51 men submitted to radical prostatectomy for localized prostate cancer were examined by immunohistochemistry using proliferation cell nuclear antigen (PCNA) monoclonal antibody to evaluate the proliferative index (PI). The relationship between PI, biological variables and p53 protein expression was evaluated by immunohistochemistry. PI was low in invasive localized prostate carcinoma (mean, 12.4%) and the incidence of PCNA-positive cells was significantly higher in tumors with p53 expression (P = 0.0226). There was no statistical difference in PCNA values when biological parameters such as Gleason score, tumor volume, extraprostatic involvement, seminal vesicle infiltration or lymph node metastasis were considered. We conclude that proliferative activity is usually low in prostate carcinoma but is correlated with p53 immune staining, indicating that p53 is important in cell cycle control in this neoplasm.
Resumo:
A new protocol is described for immunization of outbred Swiss mice. The procedure is based on subcutaneous implantation of antigen-coupled polyester-polyurethane sponges cut into disks of 10 mm in diameter vs 2 mm in thickness. Antigen coupling was performed by overnight incubation of the sponge with a solution of ovalbumin (Ova) (2 mg/ml) diluted in sodium carbonate buffer, pH 9.6. The amount of ovalbumin that was taken up by the sponge was between 71.4 to 82.5 µg. This was estimated by comparing the Ova absorbance at 280 nm in coating buffer solutions before and after incubation. To compare the efficiency of the proposed method, experimental groups immunized with the antigen in the presence of adjuvants (10 µg in Al(OH)3 or 100 µg in complete Freund's adjuvant (CFA)) were run in parallel. The data obtained after the 3rd week of immunization indicate that both cellular and humoral immune responses were achieved. These were assayed by antigen-induced footpad swelling and ELISA (specific antibodies), respectively. The levels of both immune responses elicited were similar to the responses observed in mice immunized with ovalbumin in the presence of Al(OH)3. The method might represent an advantage when immunizing with pathogenic antigens. Preliminary experiments have suggested that the antigen remains immobilized or bound to the sponge for a long period of time, since there is an increment on the cell population inside the sponges after boosting the animals. If so, the undesirable effects of immunization would be reduced.
Resumo:
Activation of Th1 or Th2 cells is associated with production of specific immunoglobulin isotypes, offering the opportunity to use antibody measurement for evaluation of T cell function. Schistosomiasis and visceral leishmaniasis are diseases associated with Th2 activation. However, an IgE response is not always detected in these patients. In the present study we evaluated specific IgE antibodies to S. mansoni and L. chagasi antigens by ELISA after depletion of serum IgG with protein G immobilized on Sepharose beads or RF-absorbent (purified sheep IgG antibodies anti-human IgG). In schistosomiasis patients, specific IgE to SWAP antigen was demonstrable in only 10 of 21 patients (48%) (mean absorbance ± SD = 0.102 ± 0.195) when unabsorbed serum was used. Depletion of IgG with protein G increased the number of specific IgE-positive tests to 13 (62%) and the use of RF-absorbent increased the number of positive results to 20 (95%) (mean absorbances ± SD = 0.303 ± 0.455 and 0.374 ± 0.477, respectively). Specific IgE anti-L. chagasi antibodies were not detected in unabsorbed serum from visceral leishmaniasis patients. When IgG was depleted with protein G, IgE antibodies were detected in only 3 (11%) of 27 patients, and the use of RF-absorbent permitted the detection of this isotype in all 27 visceral leishmaniasis sera tested (mean absorbance ± SD = 0.104 ± 0.03). These data show that the presence of IgG antibodies may prevent the detection of a specific IgE response in these parasite diseases. RF-absorbent, a reagent that blocks IgG-binding sites and also removes rheumatoid factor, was more efficient than protein G for the demonstration of specific IgE antibodies.
Resumo:
Initial contacts with a T-dependent antigen by mucosal routes may result in oral tolerance, defined as the inhibition of specific antibody formation after subsequent parenteral immunizations with the same antigen. We describe here an additional and permanent consequence of these initial contacts, namely, the blockade of secondary-type responsiveness to subsequent parenteral contacts with the antigen. When repeatedly boosted ip with small doses (3 µg) of ovalbumin (OVA) (or lysozyme), primed B6D2F1 mice showed progressively higher antibody responses. In contrast, mice primed after a single oral exposure to the antigen, although repeatedly boosted, maintained their secondary antibody titers on a level which was inversely proportional to the dose of antigen in the oral pretreatment. This phenomenon also occurred in situations in which oral tolerance was not induced. For example, senile 70-week-old B6D2F1 mice pretreated with a single gavage of 20 mg OVA did not become tolerant, i.e., they formed the same secondary levels of anti-OVA antibodies as non-pretreated mice. However, after 4 weekly challenges with 3 µg OVA ip, orally pretreated mice maintained the same anti-OVA serum levels, whereas the levels of control mice increased sequentially. This "stabilizing" effect of mucosal exposure was dose dependent, occurred with different proteins and was triggered by single or multiple oral or nasal exposures to the antigen.
Resumo:
Cloning of the T-cell receptor genes is a critical step when generating T-cell receptor transgenic mice. Because T-cell receptor molecules are clonotypical, isolation of their genes requires reverse transcriptase-assisted PCR using primers specific for each different Valpha or Vß genes or by the screening of cDNA libraries generated from RNA obtained from each individual T-cell clone. Although feasible, these approaches are laborious and costly. The aim of the present study was to test the application of the non-palindromic adaptor-PCR method as an alternative to isolate the genes encoding the T-cell receptor of an antigen-specific T-cell hybridoma. For this purpose, we established hybridomas specific for trans-sialidase, an immunodominant Trypanosoma cruzi antigen. These T-cell hybridomas were characterized with regard to their ability to secrete interferon-gamma, IL-4, and IL-10 after stimulation with the antigen. A CD3+, CD4+, CD8- interferon-gamma-producing hybridoma was selected for the identification of the variable regions of the T-cell receptor by the non-palindromic adaptor-PCR method. Using this methodology, we were able to rapidly and efficiently determine the variable regions of both T-cell receptor chains. The results obtained by the non-palindromic adaptor-PCR method were confirmed by the isolation and sequencing of the complete cDNA genes and by the recognition with a specific antibody against the T-cell receptor variable ß chain. We conclude that the non-palindromic adaptor-PCR method can be a valuable tool for the identification of the T-cell receptor transcripts of T-cell hybridomas and may facilitate the generation of T-cell receptor transgenic mice.