989 resultados para Propagação vegetativa e Silvicultura clonal
Resumo:
Functional effects of acute and prolonged (48 h) exposure to the biguanide drug metformin were examined in the clonal pancreatic ß-cell line, BRIN-BD11. Effects of metformin on prolonged exposure to excessive increased concentrations of glucose and palmitic acid were also assessed. In acute 20-min incubations, 12.5-50 µm metformin did not alter basal (1.1 mm glucose) or glucose-stimulated (16.7 mm glucose) insulin secretion. However, higher concentrations of metformin (100-1000 µm) increased (1.3-1.5-fold; p
Resumo:
The effects of hypotonic shock upon membrane C1 permeability of ROS 17/2.8 osteoblast-like cells was investigated using the patch-clamp technique. Hypotonic shock produced cell swelling that was accompanied by large amplitude, outwardly rectifying, currents that were active across the entire physiological range of membrane potentials (-80 to +100 mV). At strong depolarisations (> +50 mV) the currents exhibited time-dependent inactivation that followed a monoexponential time course. The currents were anion selective and exhibited a selectivity sequence of SCN- > I > Br- > Cl- > F- > gluconate. Current activation was unaffected by inhibitors of protein kinase (A (H-89) and tyrosine kinase (tyrphostin A25), and could not be mimicked by elevation of intracellular Ca2+ or activation of protein kinase C. Similarly, disruption of actin filaments by dihydrocytochalsin B, or generation of membrane tension by dipyridamole failed to elicit significant increases in cell chloride permeability. The mechanism of current activation is as yet undetermined. The currents were effectively inhibited by the chloride channel inhibitors NPPB and DIDS but resistant to DPC. A Cl- conductance with similar characteristics was found to be present in mouse primary cultured calvarial osteoblasts. The volume-sensitive Cl- current in ROS 17/2.8 cells was inhibited by arachidonic acid in two distinct phases. A rapid block that developed within 10 s, preceding a slower developing inhibitory phase that occurred approximately 90 s after onset of arachidonate superfusion. Arachidonic acid also induced kinetic modifications of the current which were evident as an acceleration of the time-dependent· inactivation exhibited at depolarised potentials. Inhibitors of cyclo-oxygenases, lipoxygenases and cytochrome P-4S0 were ineffectual against arachidonic acid's effects sugtgesting that arachidonic acid may elicit it's effects directly. Measurements of cell volume under hypotonic conditions showed that ROS 17/2,8 cells could effectively regulate their volume, However, effective inhibitors of the volume-sensitive CI" current drastically impaired this response suggesting that physiologically this current may have a vital role in cell volume regulation, In L6 skeletal myocytes, vasopressin was found to rapidiy hyperpolarise cells. This appears to occur as the result of activation of Ca2+ -sensitive K+ channels in a process dependent upon the presence of extracellular Ca2+.
Resumo:
Aim: Delayed graft revascularization impedes the success of human islet transplantation. This study utilized rotational co-culture of insulin secreting ß-cells with human umbilical vein endothelial cells (HUVECs) and a peroxisome proliferator-activated receptor gamma (PPAR-?) agonist to promote insulin and vascular endothelial growth factor (VEGF) secretory function. Methods: Clonal BRIN-BD11 (D11) cells were maintained in static culture (SC) and rotational culture (RC) ± HUVEC and ± the TZD (thiazolidinedione) rosiglitazone (10 mmol/l) as a specific PPAR-? agonist. HUVECs were cultured in SC and RC ± D11 and ± TZD. D11 insulin secretion was induced by static incubation with low glucose (1.67 mmol/l), high glucose (16.7 mmol/l) and high glucose with 10 mmol/l theophylline (G+T) and assessed by enzyme-linked immunosorbent assay (ELISA). HUVEC proliferation was determined by ATP luminescence, whereas VEGF secretion was quantified by ELISA. Co-cultured cells were characterized by immunostaining for insulin and CD31. Results: D11 SC and RC showed enhanced insulin secretion in response to 16.7 mmol/l and G+T (p <0.01); without significant alteration by the TZD. Co-culture with HUVEC in SC and RC also increased D11 insulin secretion when challenged with 16.7 mmol/l and G+T (p <0.01), and this was slightly enhanced by the TZD. The presence of HUVEC increased D11 SC and RC insulin secretion in response to high glucose and G+T, respectively (p <0.01). Addition of the TZD increased SC and RC HUVEC ATP content (p <0.01) and VEGF production (p <0.01) in the presence and absence of D11 cells. Conclusions: Rotational co-culture of insulin secreting cells with endothelial cells, and exposure to a PPAR-? agonist may improve the prospects for graft revascularization and function after implantation. © 2011 Blackwell Publishing Ltd.
Resumo:
Thiazolidinediones (TZDs) are used as antidiabetic therapy. The purpose of the present study was to examine whether the TZD rosiglitazone has direct actions on pancreatic beta-cells that contribute to its overall effects. Effects of acute and prolonged (48 h) exposure to rosiglitazone, as a model glitazone compound, were assessed in clonal pancreatic BRIN-BD11 beta-cells maintained in standard, glucotoxic and lipotoxic cultures. In acute 20-min incubations, rosiglitazone (0.2-100 M) did not alter basal or glucose-stimulated insulin secretion. However, rosiglitazone (6.25 M) enhanced (p
Resumo:
Craniopharyngioma is the most common childhood tumor and thought to arise from embryonic remnants of Rathke's pouch. The paucity of published data on the molecular basis of these tumors prompted us to examine 22 adamantinomatous craniopharyngiomas looking for genetic abnormalities. Using the X-linked polymorphic androgen receptor gene as a tool for X-chromosome inactivating analysis, we found that a subset of craniopharyngiomas are monoclonal and therefore are probably due to acquired somatic genetic defects. Thus, we investigated these tumours for mutations within three candidate genes, Gsα, Gi2α and patched (PTCH). Using single stranded conformational polymorphism (SSCP), denaturing gradient gel electrophoresis and direct sequencing, the presence of somatic mutations in these genes could not be demonstrated in any tumor. Our data indicate that a subset of craniopharyngiomas are monoclonal and the mutations in the PTCH, Gsα, and Gi2α contribute little if any to cranipharyngioma development.
Resumo:
The adipocyte derived peptide hormone leptin is known to regulate apoptosis and cell viability in several cells and tissues, as well as having several pancreatic islet beta-cell specific effects such as inhibition of glucose-stimulated insulin secretion. This study investigated the effects of leptin upon apoptosis induced by serum depletion and on expression of the apoptotic regulators B-cell leukaemia 2 gene product (BCL-2) and BCL2-associated X protein (Bax) in the glucose-responsive BRIN-BD11 beta-cell line.
Resumo:
The umbu tree (Spondias tuberosa Arruda) is a fruit native to the northeast of Brazil with great economic, social and ecological importance for the northeastern semi-arid region. Despite its role, the umbu tree has suffered negative pressure thanks to cluttered extractivism and to negative selection of its fruits, which as the deforestation and the dormancy of seeds contribute to the decrease of its production year after year, making necessary studies that contribute to the improvement of this specie and its conservation. Given the risks to the conservation of the specie and its usefulness to the population, the association between plant biotechnology, for being a tool that can be used to increase its production. and the perception of gathering communities, by valuing the point of view and the knowledge of the population, can facilitate its conservation. This work aimed to develop methods of propagation for umbu tree as well as contribute to its conservation by using biotechnology, with specific objectives to contribute to the conservation of this species; determine concentrations of BAP and ANA in the formation of buds; testing the efficiency of different substrates and concentrations of gibberellic acid on germination in vitro and ex vitro, as well as capture the perception of families in communities that engage in the gathering of umbu. To study the germination, the seeds were inoculated in different substrates (vermiculite, vermiculite + clay, clay, clay + manure and manure + vermiculite) and in different concentrations of gibberellic acid (0 mg, 250 g and 500 mg). For the formation of buds BAP to 0.1 mg-1 was associated with different concentrations of ANA (0.2; 0.4; 0.8mg.L-1). The study of perception was conducted by applying semi-structured questionnaire with Malhada Vermelha community. The experiments resulted in vermiculite and concentration of 500 mg gibberellic acid as the best for germination. The association of 0.1 mg.L-1 of BAP to 0.2 mg.L-1 of ANA provided better formation of buds. As to the application of questionnaires, they revealed that the population understands the decreased amount of umbu plants and umbu fruit in the region, as well as shows concern for its conservation.
Resumo:
Compared to conventional composites, polymer matrix nanocomposites typically exhibit enhanced properties at a significantly lower filler volume fraction. Studies published in the literature indicate t hat the addition of nanosilicate s can increase the resistance to flame propagation in polymers. In this work, a treatment of montmorillonite (MMT) nano clay and the effect of its ad dition o n flame propagation characteristics of vinyl ester were studied. The resea rch was conducted in two stages. The first stage focused on the purification and activation of the MMT clay collected from a natural deposit to improve compatibility with the polymer matrix . Clay modification with sodium acetate was also studied to improve particle dispersion in the polymer. The second step was focused on the effect of the addition of the treated clay on nanocomposites ’ properties. Nanocomposites with clay con tents of 1, 2, 4 wt. % were processed. T he techniques for the characterization of the clay included X - ray fluorescence (XRF), X - r ay d iffraction (XRD), thermogravimetric a nalysis (TGA), d ifferential scanning c alorimetry (DSC) , s urface area (BET) and Fourier transform infrared spectroscopy (FTIR). For t he characterization of the nanocomposites , the techniques used were thermogravimetric a nalysis (TGA) , differential scanning c alorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) , scanning electron mi croscopy (SEM), transmission electron m icroscopy (TEM), and the determination of tensile strength, modulus of elasticity and resistance to flame propagation. According to the results, the purification and activation treatment with freeze - drying used in thi s work for the montmorillonite clay was efficient to promote compatibility and dispersion in the polymer matrix as evidenced by the characterization of the nanocomposite s . It was also observed that the clay modifica tion using sodium acetate did not produce any significant effect to improve compatibilization of the clay with the polymer. The addition of the treated MMT resulted in a reduction of up to 53% in the polymer flame propagation speed and did not affect the mechanical tensile strength and modulus o f elas ticity of the polymer, indicating compatibility between the clay and polymer. The effectiveness in reducing flame propagation speed peaked for nanocomposites with 2 wt. % clay, indicating that this is the optimum clay concentration for this property. T he clay treatment used in this work enables the production of vinylester matrix nanocomposites with flame - retardancy properties .
Resumo:
Agriculture is an essential activity to the human development, the tendency is that their need to increase according to the increase in world population. It is very important to take the maximum performance that is possible of each land without degrading it, a frequently monitoring is essential for the best performance. The purpose of this work is, nondestructively, to monitor the surface electrical conductivity of the soil in a demarcated area, as on a plantation, using low frequency radio waves. The conductivity is directly linked to the amount of water in the area and nutrients, therefore a periodic or even permanent monitoring increases significantly the efficient of the use of the soil. They will be used long-wave radio transmission or medium whose main characteristic to spread over the surface of the earth. It is possible to choose an AM radio with location, frequency and power of the transmission known or generate the signal. The studied method computes the conductivity of the ground in a straight line between two measured points, so it can be used in smaller or larger size fields. Measurements were carried out using an electromagnetic field strength analyzer. The data obtained in the measurements are processed by a numerical calculation program, in our case Matlab. It is concluded that the recommendations of the ITU (International Telecommunication Union) on the conductivity of soil in Brazil is far from reality, on some routes the recommendations indicate the use of the electrical conductivity of the soil 1 mS/m, while the measurements was found 19 mS/m. With the method described a precision farmer, once initial research for about a year, can monitor the humidity and salinity of the land, with the ability to predict the area and the most suitable time for irrigation and fertilization, making management more efficient and less expensive, while optimizing water use, natural resource increasingly precious.
Resumo:
Savannah is the second biome in biodiversity in Brazil, presenting great vegetation endemism. Dipteryx alata Vog. (Fabaceae), native from this biome, is an economically important species, with an incipient market due to the lack of commercial plantations. This highlights the need to develop and provide the basis for the domestication of this species. Thus, this study determined the best conditions for in vitro establishment, multiplication, elongation and rooting of stem tips of D. alata plantlets grown vitro. Two culture media (MS and WPM) were evaluated in different salt concentrations (25, 50, 75 and 100%) for plantlet establishment. Four concentrations of 6– Benzylaminopurine (BAP) (0, 1, 2, 3 and 4 mg L-1) amended with 0.25 mg L-1 naphthalene-acetic acid (NAA) were studied for multiplication. Simultaneous elongation and rooting were studied with four concentrations of NAA (0, 1, 2, 3 and 4 mg L-1) together with 0.5 mg L-1 IBA. The variables analyzed were: shoot length (CPA), root length (CP), fresh matter (MF), dry matter (MSC), stem diameter (DC) and number of leaves (NF), 120 days after inoculation, with the exception of number of shoots, which was evaluated in the multiplication stage only. The medium MS at the original salt concentration (100%) was effective for the in vitro establishment of E. alata, resulting in greater root length (27.65 cm) and number of leaves per plantlet (26.0). The concentration of 4 mg L-1 BAP was the best one for multiplication; however, greater concentrations can boost multiplication. The effect of NAA and IBA were noticeable on in vitro elongation and rooting, with best CPA (3.14 cm) and CR (15.84 cm). Therefore, it is possible to state that the medium MS increases the success probability of in vitro establishment of stem tips of Dipteryx alata. NAA concentrations below 3 mg L-1 were favorable for in vitro development of the species, with essential characteristics for acclimatization success|.
Resumo:
Peer reviewed