930 resultados para Professional Life Cycle of the Teacher
Resumo:
Objetivo:traduzir o instrumento Venous legulcer quality of life questionnaire (VLU-QoL), adaptá-lo culturalmente para o português do Brasil e validá-lo com pacientes do Hospital das Clínicas da Faculdade de Medicina de Botucatu (FMB) da Universidade Estadual Paulista (Unesp). Métodos:o questionário foi traduzido por um tradutor profissional e por dois dermatologistas especialistas na área de úlceras venosas (UV), sendo reformulado em reunião com os três tradutores. O constructo (VLU-QoL-Br) foi submetido a pré-entrevista com 10 portadores de UV para a adaptação da linguagem. Posteriormente, foi aplicado em pacientes do HC-Unesp, e como teste-reteste para verificação de sua reprodutibilidade. Resultados:foram avaliados 82 pacientes, sendo 56 (68%) do sexo feminino. A idade média foi de 67,3 anos. O questionário foi traduzido, adaptado e aplicado aos pacientes. O constructo apresentou alta consistência interna (alfa= 0,94) e adequada correlação item-total. Quando avaliados os 32 retestes, observou-se correlação intraclasse para concordância de 0,78 (p < 0,01), indicando boa reprodutibilidade do constructo. A análise fatorial confirmatória corroborou as dimensões do questionário original: atividades, psicológico e sintomas. Escores do VLU-QoL-Br se associaram, independentemente, à área total das úlceras e a menor escolaridade dos sujeitos (p < 0,01). Conclusão:a tradução, a adaptação e a validação do questionário VLU-Qol-Br demonstrou boa performance psicométrica, permitindo seu uso clínico no Brasil. É importante avaliar seu desempenho em outras regiões e em diferentes amostras de indivíduos.
Resumo:
This study records, for the first time, the occurrence of all four male morphotypes in a population of Macrobrachium amazonicum from a continental environment, with an entirely freshwater life cycle. The specimens studied came from the Tietê River, state of São Paulo, Brazil, and were collected in a lotic environment downstream from Ibitinga Dam. This population was compared with other continental populations, including a population from the dam itself, collected in a previous study. Four samples of 30 minutes were taken monthly, using a trap, from January to April 2011. Each male specimen was measured with respect to seven body dimensions as follows: carapace length (CL), right cheliped length (RCL), dactyl length (DCL), propodus length (PPL), carpus length (CRL), merus length (ML) and ischium length (IL). The relative growth was analyzed based on the change in growth patterns of certain body parts in relation to the independent variable CL. The four male morphotypes proposed for the species were found using morphological and morphometric analyses. Different biological characteristics were found between the populations studied. The male population of the lake of Ibitinga and from Pantanal presented mean sizes and number of morphotypes lower than the population studied here. These differences seem to be closely related to ecological characteristics of the environments inhabited by these populations. Our results supported the hypothesis that coastal and continental populations of M. amazonicum belong to the same species.
Resumo:
We studied the temporal distribution and reproductive biology of marine podonids during two consecutive years off Ubatuba, southeast coast of Brazil. Podonid specimens and their eggs and embryos were counted, measured and classified into categories. Pseudevadne tergestina was the most abundant species, and was more abundant in surface layers, in warm seasons, when the water column was stratified because of bottom intrusions of the cold and nutrient-rich South Atlantic Central Water (SACW) onto the inner shelf. Evadne spinifera had a similar temporal and vertical distribution, but with lower abundance and frequency. Pleopis schmackeri did not show a clear seasonal distribution, but preferred bottom layers. Pleopis polyphemoides and Podon intermedius occurred in low abundances, and only under SACW influence. Parthenogenetic females were dominant among all podonid species. Gamogenetic females of P. polyphemoides and P. intermedius were observed, but males of neither species occurred. This suggests that in tropical and subtropical regions, P. tergestina, E. spinifera and P. schmackeri reproduce through parthenogenesis during most of the year.
Resumo:
Sugarcane (Saccharum spp.) and palm tree (Elaeis guianeensis) are crops with high biofuel yields, 7.6 m(3) ha (1) y(-)1 of ethanol and 4 Mg ha(-1) y(-1) of oil, respectively. The joint production of these crops enhances the sustainability of ethanol. The objective of this work was comparing a traditional sugarcane ethanol production system (TSES) with a joint production system (JSEB), in which ethanol and biodiesel are produced at the same biorefinery but only ethanol is traded. The comparison is based on ISO 14.040:2006 and ISO 14044:2006, and appropriate indicators. Production systems in Cerrado (typical savannah), Cerradao (woody savannah) and pastureland ecosystems were considered. Energy and carbon balances, and land use change impacts were evaluated. The joint system includes 100% substitution of biodiesel for diesel, which is all consumed in different cropping stages. Data were collected by direct field observation methods, and questionnaires applied to Brazilian facilities. Three sugarcane mills situated in Sao Paulo State and one palm oil refinery located in Para State were surveyed. The information was supplemented by secondary sources. Results demonstrated that fossil fuel use and greenhouse gas emissions decreased, whereas energy efficiency increased when JSEB was compared to TSES. In comparison with TSES, the energy balance of JSEB was 1.7 greater. In addition, JSEB released 23% fewer GHG emissions than TSES. The ecosystem carbon payback time for Cerrado, Cerradao, and Degraded Grassland of JSEB was respectively 4, 7.7 and -7.6 years. These are typical land use types of the Brazilian Cerrado region for which JSEB was conceived. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Modern food systems are characterized by a high energy intensity as well as by the production of large amounts of waste, residuals and food losses. This inefficiency presents major consequences, in terms of GHG emissions, waste disposal, and natural resource depletion. The research hypothesis is that residual biomass material could contribute to the energetic needs of food systems, if recovered as an integrated renewable energy source (RES), leading to a sensitive reduction of the impacts of food systems, primarily in terms of fossil fuel consumption and GHG emissions. In order to assess these effects, a comparative life cycle assessment (LCA) has been conducted to compare two different food systems: a fossil fuel-based system and an integrated system with the use of residual as RES for self-consumption. The food product under analysis has been the peach nectar, from cultivation to end-of-life. The aim of this LCA is twofold. On one hand, it allows an evaluation of the energy inefficiencies related to agro-food waste. On the other hand, it illustrates how the integration of bioenergy into food systems could effectively contribute to reduce this inefficiency. Data about inputs and waste generated has been collected mainly through literature review and databases. Energy balance, GHG emissions (Global Warming Potential) and waste generation have been analyzed in order to identify the relative requirements and contribution of the different segments. An evaluation of the energy “loss” through the different categories of waste allowed to provide details about the consequences associated with its management and/or disposal. Results should provide an insight of the impacts associated with inefficiencies within food systems. The comparison provides a measure of the potential reuse of wasted biomass and the amount of energy recoverable, that could represent a first step for the formulation of specific policies on the integration of bioenergies for self-consumption.
Resumo:
This work assesses the environmental impact of a municipal solid waste incinerator with energy recovery in Forlì-Cesena province (Emilia-Romagna region, Italy). The methodology used is Life Cycle Assessment (LCA). As the plant already applies the best technologies available in waste treatment, this study focuses on the fate of the residues (bottom and fly ash) produced during combustion. Nine scenarios are made, based on different ash treatment disposing/recycling techniques. The functional unit is the amount of waste incinerated in 2011. Boundaries are set from waste arrival in the plant to the disposal/recovery of the residues produced, with energy recovery. Only the operative period is considered. Software used is GaBi 4 and the LCIA method used is CML2001. The impact categories analyzed are: abiotic depletion, acidification, eutrophication, freshwater aquatic ecotoxicity, global warming, human toxicity, ozone layer depletion, photochemical oxidant formation, terrestrial ecotoxicity and primary energy demand. Most of the data are taken from Herambiente. When primary data are not available, data from Ecoinvent and GaBi databases or literature data are used. The whole incineration process is sustainable, due to the relevant avoided impact given by co-generator. As far as regards bottom ash treatment, the most influential process is the impact savings from iron recovery. Bottom ash recycling in road construction or as building material are both valid alternatives, even if the first option faces legislative limits in Italy. Regarding fly ash inertization, the adding of cement and Ferrox treatment results the most feasible alternatives. However, this inertized fly ash can maintain its hazardous nature. The only method to ensure the stability of an inertized fly ash is to couple two different stabilization treatments. Ash stabilization technologies shall improve with the same rate of the flexibility of the national legislation about incineration residues recycling.
Resumo:
The present work is included in the context of the assessment of sustainability in the construction field and is aimed at estimating and analyzing life cycle cost of the existing reinforced concrete bridge “Viadotto delle Capre” during its entire life. This was accomplished by a comprehensive data collection and results evaluation. In detail, the economic analysis of the project is performed. The work has investigated possible design alternatives for maintenance/rehabilitation and end-of-life operations, when structural, functional, economic and also environmental requirements have to be fulfilled. In detail, the economic impact of different design options for the given reinforced concrete bridge have been assessed, whereupon the most economically, structurally and environmentally efficient scenario was chosen. The Integrated Life-Cycle Analysis procedure and Environmental Impact Assessment were also discussed in this work. The scope of this thesis is to illustrate that Life Cycle Cost analysis as part of Life Cycle Assessment approach could be effectively used to drive the design and management strategy of new and existing structures. The final objective of this contribution is to show how an economic analysis can influence decision-making in the definition of the most sustainable design alternatives. The designers can monitor the economic impact of different design strategies in order to identify the most appropriate option.
Resumo:
Highway infrastructure plays a significant role in society. The building and upkeep of America’s highways provide society the necessary means of transportation for goods and services needed to develop as a nation. However, as a result of economic and social development, vast amounts of greenhouse gas emissions (GHG) are emitted into the atmosphere contributing to global climate change. In recognizing this, future policies may mandate the monitoring of GHG emissions from public agencies and private industries in order to reduce the effects of global climate change. To effectively reduce these emissions, there must be methods that agencies can use to quantify the GHG emissions associated with constructing and maintaining the nation’s highway infrastructure. Current methods for assessing the impacts of highway infrastructure include methodologies that look at the economic impacts (costs) of constructing and maintaining highway infrastructure over its life cycle. This is known as Life Cycle Cost Analysis (LCCA). With the recognition of global climate change, transportation agencies and contractors are also investigating the environmental impacts that are associated with highway infrastructure construction and rehabilitation. A common tool in doing so is the use of Life Cycle Assessment (LCA). Traditionally, LCA is used to assess the environmental impacts of products or processes. LCA is an emerging concept in highway infrastructure assessment and is now being implemented and applied to transportation systems. This research focuses on life cycle GHG emissions associated with the construction and rehabilitation of highway infrastructure using a LCA approach. Life cycle phases of the highway section include; the material acquisition and extraction, construction and rehabilitation, and service phases. Departing from traditional approaches that tend to use LCA as a way to compare alternative pavement materials or designs based on estimated inventories, this research proposes a shift to a context sensitive process-based approach that uses actual observed construction and performance data to calculate greenhouse gas emissions associated with highway construction and rehabilitation. The goal is to support strategies that reduce long-term environmental impacts. Ultimately, this thesis outlines techniques that can be used to assess GHG emissions associated with construction and rehabilitation operations to support the overall pavement LCA.
Resumo:
Algae are considered a promising source of biofuels in the future. However, the environmental impact of algae-based fuel has high variability in previous LCA studies due to lack of accurate data from researchers and industry. The National Alliance for Advanced Biofuels and Bioproducts (NAABB) project was designed to produce and evaluate new technologies that can be implemented by the algal biofuel industry and establish the overall process sustainability. The MTU research group within NAABB worked on the environmental sustainability part of the consortium with UOP-Honeywell and with the University of Arizona (Dr. Paul Blowers). Several life cycle analysis (LCA) models were developed within the GREET Model and SimaPro 7.3 software to quantitatively assess the environment viability and sustainability of algal fuel processes. The baseline GREET Harmonized algae life cycle was expanded and replicated in SimaPro software, important differences in emission factors between GREET/E-Grid database and SimaPro/Ecoinvent database were compared, and adjustments were made to the SimaPro analyses. The results indicated that in most cases SimaPro has a higher emission penalty for inputs of electricity, chemicals, and other materials to the algae biofuels life cycle. A system-wide model of algae life cycle was made starting with preliminary data from the literature, and then progressed to detailed analyses based on inputs from all NAABB research areas, and finally several important scenarios in the algae life cycle were investigated as variations to the baseline scenario. Scenarios include conversion to jet fuel instead of biodiesel or renewable diesel, impacts of infrastructure for algae cultivation, co-product allocation methodology, and different usage of lipid-extracted algae (LEA). The infrastructure impact of algae cultivation is minimal compared to the overall life cycle. However, in the scenarios investigating LEA usage for animal feed instead of internal recycling for energy use and nutrient recovery the results reflect the high potential variability in LCA results. Calculated life cycle GHG values for biofuel production scenarios where LEA is used as animal feed ranged from a 55% reduction to 127% increase compared to the GREET baseline scenario depending on the choice of feed meal. Different allocation methods also affect LCA results significantly. Four novel harvesting technologies and two extraction technologies provided by the NAABB internal report have been analysis using SimaPro LCA software. The results indicated that a combination of acoustic extraction and acoustic harvesting technologies show the most promising result of all combinations to optimize the extraction of algae oil from algae. These scenario evaluations provide important insights for consideration when planning for the future of an algae-based biofuel industry.
Resumo:
Renewable hydrocarbon biofuels are being investigated as possible alternatives to conventional liquid transportation fossil fuels like gasoline, kerosene (aviation fuel), and diesel. A diverse range of biomass feedstocks such as corn stover, sugarcane bagasse, switchgrass, waste wood, and algae, are being evaluated as candidates for pyrolysis and catalytic upgrading to produce drop-in hydrocarbon fuels. This research has developed preliminary life cycle assessments (LCA) for each feedstock-specific pathway and compared the greenhouse gas (GHG) emissions of the hydrocarbon biofuels to current fossil fuels. As a comprehensive study, this analysis attempts to account for all of the GHG emissions associated with each feedstock pathway through the entire life cycle. Emissions from all stages including feedstock production, land use change, pyrolysis, stabilizing the pyrolysis oil for transport and storage, and upgrading the stabilized pyrolysis oil to a hydrocarbon fuel are included. In addition to GHG emissions, the energy requirements and water use have been evaluated over the entire life cycle. The goal of this research is to help understand the relative advantages and disadvantages of the feedstocks and the resultant hydrocarbon biofuels based on three environmental indicators; GHG emissions, energy demand, and water utilization. Results indicate that liquid hydrocarbon biofuels produced through this pyrolysis-based pathway can achieve greenhouse gas emission savings of greater than 50% compared to petroleum fuels, thus potentially qualifying these biofuels under the US EPA RFS2 program. GHG emissions from biofuels ranged from 10.7-74.3 g/MJ from biofuels derived from sugarcane bagasse and wild algae at the extremes of this range, respectively. The cumulative energy demand (CED) shows that energy in every biofuel process is primarily from renewable biomass and the remaining energy demand is mostly from fossil fuels. The CED for biofuel range from 1.25-3.25 MJ/MJ from biofuels derived from sugarcane bagasse to wild algae respectively, while the other feedstock-derived biofuels are around 2 MJ/MJ. Water utilization is primarily from cooling water use during the pyrolysis stage if irrigation is not used during the feedstock production stage. Water use ranges from 1.7 - 17.2 gallons of water per kg of biofuel from sugarcane bagasse to open pond algae, respectively.
Resumo:
Argininosuccinic aciduria (ASA) is an autosomal recessive urea cycle disorder caused by deficiency of argininosuccinate lyase (ASL) with a wide clinical spectrum from asymptomatic to severe hyperammonemic neonatal onset life-threatening courses. We investigated the role of ASL transcript variants in the clinical and biochemical variability of ASA. Recombinant proteins for ASL wild type, mutant p.E189G, and the frequently occurring transcript variants with exon 2 or 7 deletions were (co-)expressed in human embryonic kidney 293T cells. We found that exon 2-deleted ASL forms a stable truncated protein with no relevant activity but a dose-dependent dominant negative effect on enzymatic activity after co-expression with wild type or mutant ASL, whereas exon 7-deleted ASL is unstable but seems to have, nevertheless, a dominant negative effect on mutant ASL. These findings were supported by structural modeling predictions for ASL heterotetramer/homotetramer formation. Illustrating the physiological relevance, the predominant occurrence of exon 7-deleted ASL was found in two patients who were both heterozygous for the ASL mutant p.E189G. Our results suggest that ASL transcripts can contribute to the highly variable phenotype in ASA patients if expressed at high levels. Especially, the exon 2-deleted ASL variant may form a heterotetramer with wild type or mutant ASL, causing markedly reduced ASL activity.
Resumo:
BACKGROUND Neonatal screening and treatment of phenylketonuria (PKU) prevent the development of neurocognitive impairment. The degree of dysfunction may be related to metabolic control and responsible for a hampered school career. METHODS This was a retrospective study from a single metabolic unit of a Swiss University Hospital. The time point of diagnosis and all Phenylalanin (Phe) concentrations during the follow-up were recorded. The primary outcome was integration into professional life defined as no professional studies versus accomplished apprenticeship versus high school diploma/university. Phe levels were correlated with professional outcome. The control group consisted of the patients' healthy parents and siblings. RESULTS A total of 27 patients (13 females, 14 males) were included in the study. The mean (SD) follow-up period was 25.1 (7.6) years. The control group consisted of 57 subjects. Overall, 23 patients were diagnosed by neonatal screening, and 4 patients were diagnosed later. All 4 were in the non-professional study group. Compared with the controls there were significantly more patients in the non-professional study group (26% vs 9%, p <0.05) and significantly less in the accomplished apprenticeship group (59% vs 82%; p <0.04). After exclusion of the patients with late diagnosis no significant differences were found with regard to the professional integration between patients and controls. Significant differences in Phe-levels between the three groups could be documented between 2-10 years of age with the highest levels in the non-professional study followed by the accomplished apprenticeship and the high school diploma group (p <0.01). CONCLUSION Patients who are diagnosed by neonatal screening and are consequently cared for are able to accomplish an apprenticeship or a high school diploma.
Resumo:
Loss of function of the urea cycle enzyme argininosuccinate lyase (ASL) is caused by mutations in the ASL gene leading to ASL deficiency (ASLD). ASLD has a broad clinical spectrum ranging from life-threatening severe neonatal to asymptomatic forms. Different levels of residual ASL activity probably contribute to the phenotypic variability but reliable expression systems allowing clinically useful conclusions are not yet available. In order to define the molecular characteristics underlying the phenotypic variability, we investigated all ASL mutations that were hitherto identified in patients with late onset or mild clinical and biochemical courses by ASL expression in human embryonic kidney 293 T cells. We found residual activities >3 % of ASL wild type (WT) in nine of 11 ASL mutations. Six ASL mutations (p.Arg95Cys, p.Ile100Thr, p.Val178Met, p.Glu189Gly, p.Val335Leu, and p.Arg379Cys) with residual activities ≥16 % of ASL WT showed no significant or less than twofold reduced Km values, but displayed thermal instability. Computational structural analysis supported the biochemical findings by revealing multiple effects including protein instability, disruption of ionic interactions and hydrogen bonds between residues in the monomeric form of the protein, and disruption of contacts between adjacent monomeric units in the ASL tetramer. These findings suggest that the clinical and biochemical course in variant forms of ASLD is associated with relevant residual levels of ASL activity as well as instability of mutant ASL proteins. Since about 30 % of known ASLD genotypes are affected by mutations studied here, ASLD should be considered as a candidate for chaperone treatment to improve mutant protein stability.
Resumo:
The protozoan pathogen Trypanosoma brucei is transmitted between mammals by tsetse flies. The first compartment colonised by trypanosomes after a blood meal is the fly midgut lumen. Trypanosomes present in the lumen-designated as early procyclic forms-express the stage-specific surface glycoproteins EP and GPEET procyclin. When the trypanosomes establish a mature infection and colonise the ectoperitrophic space, GPEET is down-regulated, and EP becomes the major surface protein of late procyclic forms. A few years ago, it was discovered that procyclic form trypanosomes exhibit social motility (SoMo) when inoculated on a semi-solid surface. We demonstrate that SoMo is a feature of early procyclic forms, and that late procyclic forms are invariably SoMo-negative. In addition, we show that, apart from GPEET, other markers are differentially expressed in these two life-cycle stages, both in culture and in tsetse flies, indicating that they have different biological properties and should be considered distinct stages of the life cycle. Differentially expressed genes include two closely related adenylate cyclases, both hexokinases and calflagins. These findings link the phenomenon of SoMo in vitro to the parasite forms found during the first 4-7 days of a midgut infection. We postulate that ordered group movement on plates reflects the migration of parasites from the midgut lumen into the ectoperitrophic space within the tsetse fly. Moreover, the process can be uncoupled from colonisation of the salivary glands. Although they are the major surface proteins of procyclic forms, EP and GPEET are not essential for SoMo, nor, as shown previously, are they required for near normal colonisation of the fly midgut.
Structure of the histone mRNA hairpin required for cell cycle regulation of histone gene expression.
Resumo:
Expression of replication-dependent histone genes requires a conserved hairpin RNA element in the 3' untranslated regions of poly(A)-less histone mRNAs. The 3' hairpin element is recognized by the hairpin-binding protein or stem-loop-binding protein (HBP/SLBP). This protein-RNA interaction is important for the endonucleolytic cleavage generating the mature mRNA 3' end. The 3' hairpin and presumably HBP/SLBP are also required for nucleocytoplasmic transport, translation, and stability of histone mRNAs. RNA 3' processing and mRNA stability are both regulated during the cell cycle. Here, we have determined the three-dimensional structure of a 24-mer RNA comprising a mammalian histone RNA hairpin using heteronuclear multidimensional NMR spectroscopy. The hairpin adopts a novel UUUC tetraloop conformation that is stabilized by base stacking involving the first and third loop uridines and a closing U-A base pair, and by hydrogen bonding between the first and third uridines in the tetraloop. The HBP interaction of hairpin RNA variants was analyzed in band shift experiments. Particularly important interactions for HBP recognition are mediated by the closing U-A base pair and the first and third loop uridines, whose Watson-Crick functional groups are exposed towards the major groove of the RNA hairpin. The results obtained provide novel structural insight into the interaction of the histone 3' hairpin with HBP, and thus the regulation of histone mRNA metabolism.