879 resultados para Power System Simulation


Relevância:

50.00% 50.00%

Publicador:

Resumo:

Mestrado em Engenharia Electrotécnica – Sistemas Eléctricos de Energia

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Although power-line communication (PLC) is not a new technology, its use to support communication with timing requirements is still the focus of ongoing research. Recently, a new infrastructure was presented, intended for communication using power lines from a central location to geographically dispersed nodes using inexpensive devices. This new infrastructure uses a two-level hierarchical power-line system, together with an IP-based network. Within this infrastructure, in order to provide end-toend communication through the two levels of the powerline system, it is necessary to fully understand the behaviour of the underlying network layers. The masterslave behaviour of the PLC MAC, together with the inherent dynamic topology of power-line networks are important issues that must be fully characterised. Therefore, in this paper we present a simulation model which is being used to study and characterise the behaviour of power-line communication.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A new integrated mathematical model for the simulation of an offshore wind system having a rectifier input voltage malfunction at one phase is presented in this paper. The mathematical model considers an offshore variable-speed wind turbine on a floating platform, equipped with a permanent magnet synchronous generator using full-power three-level converter to inject energy into the electric network, through a high voltage direct current transmission submarine cable. The model for the drive train is a discrete three mass, incorporating the dynamic of the moving surface. A case study is presented to access conclusion about the malfunction.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

As the development of integrated circuit technology continues to follow Moore’s law the complexity of circuits increases exponentially. Traditional hardware description languages such as VHDL and Verilog are no longer powerful enough to cope with this level of complexity and do not provide facilities for hardware/software codesign. Languages such as SystemC are intended to solve these problems by combining the powerful expression of high level programming languages and hardware oriented facilities of hardware description languages. To fully replace older languages in the desing flow of digital systems SystemC should also be synthesizable. The devices required by modern high speed networks often share the same tight constraints for e.g. size, power consumption and price with embedded systems but have also very demanding real time and quality of service requirements that are difficult to satisfy with general purpose processors. Dedicated hardware blocks of an application specific instruction set processor are one way to combine fast processing speed, energy efficiency, flexibility and relatively low time-to-market. Common features can be identified in the network processing domain making it possible to develop specialized but configurable processor architectures. One such architecture is the TACO which is based on transport triggered architecture. The architecture offers a high degree of parallelism and modularity and greatly simplified instruction decoding. For this M.Sc.(Tech) thesis, a simulation environment for the TACO architecture was developed with SystemC 2.2 using an old version written with SystemC 1.0 as a starting point. The environment enables rapid design space exploration by providing facilities for hw/sw codesign and simulation and an extendable library of automatically configured reusable hardware blocks. Other topics that are covered are the differences between SystemC 1.0 and 2.2 from the viewpoint of hardware modeling, and compilation of a SystemC model into synthesizable VHDL with Celoxica Agility SystemC Compiler. A simulation model for a processor for TCP/IP packet validation was designed and tested as a test case for the environment.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In the doctoral dissertation, low-voltage direct current (LVDC) distribution system stability, supply security and power quality are evaluated by computational modelling and measurements on an LVDC research platform. Computational models for the LVDC network analysis are developed. Time-domain simulation models are implemented in the time-domain simulation environment PSCAD/EMTDC. The PSCAD/EMTDC models of the LVDC network are applied to the transient behaviour and power quality studies. The LVDC network power loss model is developed in a MATLAB environment and is capable of fast estimation of the network and component power losses. The model integrates analytical equations that describe the power loss mechanism of the network components with power flow calculations. For an LVDC network research platform, a monitoring and control software solution is developed. The solution is used to deliver measurement data for verification of the developed models and analysis of the modelling results. In the work, the power loss mechanism of the LVDC network components and its main dependencies are described. Energy loss distribution of the LVDC network components is presented. Power quality measurements and current spectra are provided and harmonic pollution on the DC network is analysed. The transient behaviour of the network is verified through time-domain simulations. DC capacitor guidelines for an LVDC power distribution network are introduced. The power loss analysis results show that one of the main optimisation targets for an LVDC power distribution network should be reduction of the no-load losses and efficiency improvement of converters at partial loads. Low-frequency spectra of the network voltages and currents are shown, and harmonic propagation is analysed. Power quality in the LVDC network point of common coupling (PCC) is discussed. Power quality standard requirements are shown to be met by the LVDC network. The network behaviour during transients is analysed by time-domain simulations. The network is shown to be transient stable during large-scale disturbances. Measurement results on the LVDC research platform proving this are presented in the work.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A comparison between two competing models of an all mechanical power transmission system is studied by using Dymola –software as the simulation tool. This tool is compared with Matlab/ Simulink –software by using functionality, user-friendliness and price as comparison criteria. In this research we assume that the torque is balanceable and transmission ratios are calculated. Using kinematic connection sketches of the two transmission models, simulation models are built into the Dymola simulation environment. Models of transmission systems are modified according to simulation results to achieve a continuous variable transmission ratio. Simulation results are compared between the two transmission systems. The main features of Dymola and MATLAB/ Simulink are compared. Advantages and disadvantages of the two softwares are analyzed and compared.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The objective of this master’s thesis was to design and simulate a wind powered hydraulic heating system that can operate independently in remote places where the use of electricity is not possible. Components for the system were to be selected in such a way that the conditions for manufacture, use and economic viability are the as good as possible. Savonius rotor was chosen for wind turbine, due to its low cut in speed and robust design. Savonius rotor produces kinetic energy in wide wind speed range and it can withstand high wind gusts. Radial piston pump was chosen for the flow source of the hydraulic heater. Pump type was selected due to its characteristics in low rotation speeds and high efficiency. Volume flow from the pump is passed through the throttle orifice. Pressure drop over the orifice causes the hydraulic oil to heat up and, thus, creating thermal energy. Thermal energy in the oil is led to radiator where it conducts heat to the environment. The hydraulic heating system was simulated. For this purpose a mathematical models of chosen components were created. In simulation wind data gathered by Finnish meteorological institute for 167 hours was used as input. The highest produced power was achieved by changing the orifice diameter so that the rotor tip speed ratio follows the power curve. This is not possible to achieve without using electricity. Thus, for the orifice diameter only one, the optimal value was defined. Results from the simulation were compared with investment calculations. Different parameters effecting the investment profitability were altered in sensitivity analyses in order to define the points of investment profitability. Investment was found to be profitable only with high average wind speeds.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The authors discuss an implementation of an object oriented (OO) fault simulator and its use within an adaptive fault diagnostic system. The simulator models the flow of faults around a power network, reporting switchgear indications and protection messages that would be expected in a real fault scenario. The simulator has been used to train an adaptive fault diagnostic system; results and implications are discussed.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This master thesis presents a new technological combination of two environmentally friendly sources of energy in order to provide DHW, and space heating. Solar energy is used for space heating, and DHW production using PV modules which supply direct current directly to electrical heating elements inside a water storage tank. On the other hand a GSHP system as another source of renewable energy provides heat in the water storage tank of the system in order to provide DHW and space heating. These two sources of renewable energy have been combined in this case-study in order to obtain a more efficient system, which will reduce the amount of electricity consumed by the GSHP system.The key aim of this study is to make simulations, and calculations of the amount ofelectrical energy that can be expected to be produced by a certain amount of PV modules that are already assembled on a house in Vantaa, southern Finland. This energy is then intended to be used as a complement to produce hot water in the heating system of the house beside the original GSHP system. Thus the amount of electrical energy purchased from the grid should be reduced and the compressor in the GSHP would need fewer starts which would reduce the heating cost of the GSHP system for space heating and providing hot water.The produced energy by the PV arrays in three different circuits will be charged directly to three electrical heating elements in the water storage tank of the existing system to satisfy the demand of the heating elements. The excess energy can be used to heat the water in the water storage tank to some extent which leads to a reduction of electricity consumption by the different components of the GSHP system.To increase the efficiency of the existing hybrid system, optimization of different PV configurations have been accomplished, and the results are compared. Optimization of the arrays in southern and western walls shows a DC power increase of 298 kWh/year compared with the existing PV configurations. Comparing the results from the optimization of the arrays on the western roof if the intention is to feed AC power to the components of the GSHP system shows a yearly AC power production of 1,646 kWh.This is with the consideration of no overproduction by the PV modules during the summer months. This means the optimized PV systems will be able to cover a larger part of summer demand compared with the existing system.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This paper presents a historical perspective of the Power Electronics education that has lead to the present situation in which such technology is indispensable for the exploitation of almost all type of clean energy primary sources. Some academic initiatives in Brazil are here discussed focusing the institutions grouped in a CAPES-Pró-Engenharia program. The curricula aspects and innovations are presented, emphasizing the multidisciplinary character of this field of Power Electronics application. © 2011 IEEE.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This paper presents a distribution feeder simulation using VHDL-AMS, considering the standard IEEE 13 node test feeder admitted as an example. In an electronic spreadsheet all calculations are performed in order to develop the modeling in VHDL-AMS. The simulation results are compared in relation to the results from the well knowing MatLab/Simulink environment, in order to verify the feasibility of the VHDL-AMS modeling for a standard electrical distribution feeder, using the software SystemVision™. This paper aims to present the first major developments for a future Real-Time Digital Simulator applied to Electrical Power Distribution Systems. © 2012 IEEE.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Space Based Solar Power satellites use solar arrays to generate clean, green, and renewable electricity in space and transmit it to earth via microwave, radiowave or laser beams to corresponding receivers (ground stations). These traditionally are large structures orbiting around earth at the geo-synchronous altitude. This thesis introduces a new architecture for a Space Based Solar Power satellite constellation. The proposed concept reduces the high cost involved in the construction of the space satellite and in the multiple launches to the geo-synchronous altitude. The proposed concept is a constellation of Low Earth Orbit satellites that are smaller in size than the conventional system. For this application a Repeated Sun-Synchronous Track Circular Orbit is considered (RSSTO). In these orbits, the spacecraft re-visits the same locations on earth periodically every given desired number of days with the line of nodes of the spacecraft’s orbit fixed relative to the Sun. A wide range of solutions are studied, and, in this thesis, a two-orbit constellation design is chosen and simulated. The number of satellites is chosen based on the electric power demands in a given set of global cities. The orbits of the satellites are designed such that their ground tracks visit a maximum number of ground stations during the revisit period. In the simulation, the locations of the ground stations are chosen close to big cities, in USA and worldwide, so that the space power constellation beams down power directly to locations of high electric power demands. The j2 perturbations are included in the mathematical model used in orbit design. The Coverage time of each spacecraft over a ground site and the gap time between two consecutive spacecrafts visiting a ground site are simulated in order to evaluate the coverage continuity of the proposed solar power constellation. It has been observed from simulations that there always periods in which s spacecraft does not communicate with any ground station. For this reason, it is suggested that each satellite in the constellation be equipped with power storage components so that it can store power for later transmission. This thesis presents a method for designing the solar power constellation orbits such that the number of ground stations visited during the given revisit period is maximized. This leads to maximizing the power transmission to ground stations.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Simulation of satellite subsystems behaviour is extramely important in the design at early stages. The subsystems are normally simulated in the both ways : isolated and as part of more complex simulation that takes into account imputs from other subsystems (concurrent design). In the present work, a simple concurrent simulation of the power subsystem of a microsatellite, UPMSat-2, is described. The aim of the work is to obtain the performance profile of the system (battery charging level, power consumption by the payloads, power supply from solar panels....). Different situations such as battery critical low or high level, effects of high current charging due to the low temperature of solar panels after eclipse,DoD margins..., were analysed, and different safety strategies studied using the developed tool (simulator) to fulfil the mission requirements. Also, failure cases were analysed in order to study the robustness of the system. The mentioned simulator has been programed taking into account the power consumption performances (average and maximum consumptions per orbit/day) of small part of the subsystem (SELEX GALILEO SPVS modular generators built with Azur Space solar cells, SAFT VES16 6P4S Li-ion battery, SSBV magnetometers, TECNOBIT and DATSI/UPM On Board Data Handling -OBDH-...). The developed tool is then intended to be a modular simulator, with the chance of use any other components implementing some standard data.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

El estudio de los ciclos del combustible nuclear requieren de herramientas computacionales o "códigos" versátiles para dar respuestas al problema multicriterio de evaluar los actuales ciclos o las capacidades de las diferentes estrategias y escenarios con potencial de desarrollo en a nivel nacional, regional o mundial. Por otra parte, la introducción de nuevas tecnologías para reactores y procesos industriales hace que los códigos existentes requieran nuevas capacidades para evaluar la transición del estado actual del ciclo del combustible hacia otros más avanzados y sostenibles. Brevemente, esta tesis se centra en dar respuesta a las principales preguntas, en términos económicos y de recursos, al análisis de escenarios de ciclos de combustible, en particular, para el análisis de los diferentes escenarios del ciclo del combustible de relativa importancia para España y Europa. Para alcanzar este objetivo ha sido necesaria la actualización y el desarrollo de nuevas capacidades del código TR_EVOL (Transition Evolution code). Este trabajo ha sido desarrollado en el Programa de Innovación Nuclear del CIEMAT desde el año 2010. Esta tesis se divide en 6 capítulos. El primer capítulo ofrece una visión general del ciclo de combustible nuclear, sus principales etapas y los diferentes tipos utilizados en la actualidad o en desarrollo para el futuro. Además, se describen las fuentes de material nuclear que podrían ser utilizadas como combustible (uranio y otros). También se puntualizan brevemente una serie de herramientas desarrolladas para el estudio de estos ciclos de combustible nuclear. El capítulo 2 está dirigido a dar una idea básica acerca de los costes involucrados en la generación de electricidad mediante energía nuclear. Aquí se presentan una clasificación de estos costos y sus estimaciones, obtenidas en la bibliografía, y que han sido evaluadas y utilizadas en esta tesis. Se ha incluido también una breve descripción del principal indicador económico utilizado en esta tesis, el “coste nivelado de la electricidad”. El capítulo 3 se centra en la descripción del código de simulación desarrollado para el estudio del ciclo del combustible nuclear, TR_EVOL, que ha sido diseñado para evaluar diferentes opciones de ciclos de combustibles. En particular, pueden ser evaluados las diversos reactores con, posiblemente, diferentes tipos de combustibles y sus instalaciones del ciclo asociadas. El módulo de evaluaciones económica de TR_EVOL ofrece el coste nivelado de la electricidad haciendo uso de las cuatro fuentes principales de información económica y de la salida del balance de masas obtenido de la simulación del ciclo en TR_EVOL. Por otra parte, la estimación de las incertidumbres en los costes también puede ser efectuada por el código. Se ha efectuado un proceso de comprobación cruzada de las funcionalidades del código y se descrine en el Capítulo 4. El proceso se ha aplicado en cuatro etapas de acuerdo con las características más importantes de TR_EVOL, balance de masas, composición isotópica y análisis económico. Así, la primera etapa ha consistido en el balance masas del ciclo de combustible nuclear actual de España. La segunda etapa se ha centrado en la comprobación de la composición isotópica del flujo de masas mediante el la simulación del ciclo del combustible definido en el proyecto CP-ESFR UE. Las dos últimas etapas han tenido como objetivo validar el módulo económico. De este modo, en la tercera etapa han sido evaluados los tres principales costes (financieros, operación y mantenimiento y de combustible) y comparados con los obtenidos por el proyecto ARCAS, omitiendo los costes del fin del ciclo o Back-end, los que han sido evaluado solo en la cuarta etapa, haciendo uso de costes unitarios y parámetros obtenidos a partir de la bibliografía. En el capítulo 5 se analizan dos grupos de opciones del ciclo del combustible nuclear de relevante importancia, en términos económicos y de recursos, para España y Europa. Para el caso español, se han simulado dos grupos de escenarios del ciclo del combustible, incluyendo estrategias de reproceso y extensión de vida de los reactores. Este análisis se ha centrado en explorar las ventajas y desventajas de reprocesado de combustible irradiado en un país con una “relativa” pequeña cantidad de reactores nucleares. Para el grupo de Europa se han tratado cuatro escenarios, incluyendo opciones de transmutación. Los escenarios incluyen los reactores actuales utilizando la tecnología reactor de agua ligera y ciclo abierto, un reemplazo total de los reactores actuales con reactores rápidos que queman combustible U-Pu MOX y dos escenarios del ciclo del combustible con transmutación de actínidos minoritarios en una parte de los reactores rápidos o en sistemas impulsados por aceleradores dedicados a transmutación. Finalmente, el capítulo 6 da las principales conclusiones obtenidas de esta tesis y los trabajos futuros previstos en el campo del análisis de ciclos de combustible nuclear. ABSTRACT The study of the nuclear fuel cycle requires versatile computational tools or “codes” to provide answers to the multicriteria problem of assessing current nuclear fuel cycles or the capabilities of different strategies and scenarios with potential development in a country, region or at world level. Moreover, the introduction of new technologies for reactors and industrial processes makes the existing codes to require new capabilities to assess the transition from current status of the fuel cycle to the more advanced and sustainable ones. Briefly, this thesis is focused in providing answers to the main questions about resources and economics in fuel cycle scenario analyses, in particular for the analysis of different fuel cycle scenarios with relative importance for Spain and Europe. The upgrade and development of new capabilities of the TR_EVOL code (Transition Evolution code) has been necessary to achieve this goal. This work has been developed in the Nuclear Innovation Program at CIEMAT since year 2010. This thesis is divided in 6 chapters. The first one gives an overview of the nuclear fuel cycle, its main stages and types currently used or in development for the future. Besides the sources of nuclear material that could be used as fuel (uranium and others) are also viewed here. A number of tools developed for the study of these nuclear fuel cycles are also briefly described in this chapter. Chapter 2 is aimed to give a basic idea about the cost involved in the electricity generation by means of the nuclear energy. The main classification of these costs and their estimations given by bibliography, which have been evaluated in this thesis, are presented. A brief description of the Levelized Cost of Electricity, the principal economic indicator used in this thesis, has been also included. Chapter 3 is focused on the description of the simulation tool TR_EVOL developed for the study of the nuclear fuel cycle. TR_EVOL has been designed to evaluate different options for the fuel cycle scenario. In particular, diverse nuclear power plants, having possibly different types of fuels and the associated fuel cycle facilities can be assessed. The TR_EVOL module for economic assessments provides the Levelized Cost of Electricity making use of the TR_EVOL mass balance output and four main sources of economic information. Furthermore, uncertainties assessment can be also carried out by the code. A cross checking process of the performance of the code has been accomplished and it is shown in Chapter 4. The process has been applied in four stages according to the most important features of TR_EVOL. Thus, the first stage has involved the mass balance of the current Spanish nuclear fuel cycle. The second stage has been focused in the isotopic composition of the mass flow using the fuel cycle defined in the EU project CP-ESFR. The last two stages have been aimed to validate the economic module. In the third stage, the main three generation costs (financial cost, O&M and fuel cost) have been assessed and compared to those obtained by ARCAS project, omitting the back-end costs. This last cost has been evaluated alone in the fourth stage, making use of some unit cost and parameters obtained from the bibliography. In Chapter 5 two groups of nuclear fuel cycle options with relevant importance for Spain and Europe are analyzed in economic and resources terms. For the Spanish case, two groups of fuel cycle scenarios have been simulated including reprocessing strategies and life extension of the current reactor fleet. This analysis has been focused on exploring the advantages and disadvantages of spent fuel reprocessing in a country with relatively small amount of nuclear power plants. For the European group, four fuel cycle scenarios involving transmutation options have been addressed. Scenarios include the current fleet using Light Water Reactor technology and open fuel cycle, a full replacement of the initial fleet with Fast Reactors burning U-Pu MOX fuel and two fuel cycle scenarios with Minor Actinide transmutation in a fraction of the FR fleet or in dedicated Accelerator Driven Systems. Finally, Chapter 6 gives the main conclusions obtained from this thesis and the future work foreseen in the field of nuclear fuel cycle analysis.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Shading reduces the power output of a photovoltaic (PV) system. The design engineering of PV systems requires modeling and evaluating shading losses. Some PV systems are affected by complex shading scenes whose resulting PV energy losses are very difficult to evaluate with current modeling tools. Several specialized PV design and simulation software include the possibility to evaluate shading losses. They generally possess a Graphical User Interface (GUI) through which the user can draw a 3D shading scene, and then evaluate its corresponding PV energy losses. The complexity of the objects that these tools can handle is relatively limited. We have created a software solution, 3DPV, which allows evaluating the energy losses induced by complex 3D scenes on PV generators. The 3D objects can be imported from specialized 3D modeling software or from a 3D object library. The shadows cast by this 3D scene on the PV generator are then directly evaluated from the Graphics Processing Unit (GPU). Thanks to the recent development of GPUs for the video game industry, the shadows can be evaluated with a very high spatial resolution that reaches well beyond the PV cell level, in very short calculation times. A PV simulation model then translates the geometrical shading into PV energy output losses. 3DPV has been implemented using WebGL, which allows it to run directly from a Web browser, without requiring any local installation from the user. This also allows taken full benefits from the information already available from Internet, such as the 3D object libraries. This contribution describes, step by step, the method that allows 3DPV to evaluate the PV energy losses caused by complex shading. We then illustrate the results of this methodology to several application cases that are encountered in the world of PV systems design. Keywords: 3D, modeling, simulation, GPU, shading, losses, shadow mapping, solar, photovoltaic, PV, WebGL