828 resultados para Positive summability kernel


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a simple yet computationally efficient construction algorithm for two-class kernel classifiers. In order to optimise classifier's generalisation capability, an orthogonal forward selection procedure is used to select kernels one by one by minimising the leave-one-out (LOO) misclassification rate directly. It is shown that the computation of the LOO misclassification rate is very efficient owing to orthogonalisation. Examples are used to demonstrate that the proposed algorithm is a viable alternative to construct sparse two-class kernel classifiers in terms of performance and computational efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many kernel classifier construction algorithms adopt classification accuracy as performance metrics in model evaluation. Moreover, equal weighting is often applied to each data sample in parameter estimation. These modeling practices often become problematic if the data sets are imbalanced. We present a kernel classifier construction algorithm using orthogonal forward selection (OFS) in order to optimize the model generalization for imbalanced two-class data sets. This kernel classifier identification algorithm is based on a new regularized orthogonal weighted least squares (ROWLS) estimator and the model selection criterion of maximal leave-one-out area under curve (LOO-AUC) of the receiver operating characteristics (ROCs). It is shown that, owing to the orthogonalization procedure, the LOO-AUC can be calculated via an analytic formula based on the new regularized orthogonal weighted least squares parameter estimator, without actually splitting the estimation data set. The proposed algorithm can achieve minimal computational expense via a set of forward recursive updating formula in searching model terms with maximal incremental LOO-AUC value. Numerical examples are used to demonstrate the efficacy of the algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the classical Parzen window (PW) estimate as the target function, the sparse kernel density estimator is constructed in a forward-constrained regression (FCR) manner. The proposed algorithm selects significant kernels one at a time, while the leave-one-out (LOO) test score is minimized subject to a simple positivity constraint in each forward stage. The model parameter estimation in each forward stage is simply the solution of jackknife parameter estimator for a single parameter, subject to the same positivity constraint check. For each selected kernels, the associated kernel width is updated via the Gauss-Newton method with the model parameter estimate fixed. The proposed approach is simple to implement and the associated computational cost is very low. Numerical examples are employed to demonstrate the efficacy of the proposed approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper derives an efficient algorithm for constructing sparse kernel density (SKD) estimates. The algorithm first selects a very small subset of significant kernels using an orthogonal forward regression (OFR) procedure based on the D-optimality experimental design criterion. The weights of the resulting sparse kernel model are then calculated using a modified multiplicative nonnegative quadratic programming algorithm. Unlike most of the SKD estimators, the proposed D-optimality regression approach is an unsupervised construction algorithm and it does not require an empirical desired response for the kernel selection task. The strength of the D-optimality OFR is owing to the fact that the algorithm automatically selects a small subset of the most significant kernels related to the largest eigenvalues of the kernel design matrix, which counts for the most energy of the kernel training data, and this also guarantees the most accurate kernel weight estimate. The proposed method is also computationally attractive, in comparison with many existing SKD construction algorithms. Extensive numerical investigation demonstrates the ability of this regression-based approach to efficiently construct a very sparse kernel density estimate with excellent test accuracy, and our results show that the proposed method compares favourably with other existing sparse methods, in terms of test accuracy, model sparsity and complexity, for constructing kernel density estimates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In enclosed shopping centres, stores benefit from the positive externalities of other stores in the centre. Some stores provide greater benefits to their neighbours than others – for example anchor tenants and brand leading stores. In managing shopping centres, these positive externalities might be captured through rental variations. This paper explores the determinants of rent – including externalities – for UK regional shopping centres. Two linked databases were utilised in the research. One contains characteristics of 148 shopping centres; the other has some 1,930 individual tenant records including rent level. These data were analysed to provide information on the characteristics of centres and retailers that help determine rent. Factors influencing tenant rents include market potential factors derived from urban and regional economic theory and shopping centre characteristics identified in prior retail research. The model also includes variables that proxy for the interaction between tenants and the impact of positive in-centre externalities. We find that store size is significantly and negatively related to tenant with both anchor and other larger tenants, perhaps as a result of the positive effects generated by their presence, paying relatively lower rents while smaller stores, benefiting from the generation of demand, pay relatively higher rents. Brand leader tenants pay lower rents than other tenants within individual retail categories.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Identifying a periodic time-series model from environmental records, without imposing the positivity of the growth rate, does not necessarily respect the time order of the data observations. Consequently, subsequent observations, sampled in the environmental archive, can be inversed on the time axis, resulting in a non-physical signal model. In this paper an optimization technique with linear constraints on the signal model parameters is proposed that prevents time inversions. The activation conditions for this constrained optimization are based upon the physical constraint of the growth rate, namely, that it cannot take values smaller than zero. The actual constraints are defined for polynomials and first-order splines as basis functions for the nonlinear contribution in the distance-time relationship. The method is compared with an existing method that eliminates the time inversions, and its noise sensitivity is tested by means of Monte Carlo simulations. Finally, the usefulness of the method is demonstrated on the measurements of the vessel density, in a mangrove tree, Rhizophora mucronata, and the measurement of Mg/Ca ratios, in a bivalve, Mytilus trossulus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We followed 100 university students in the UK for one week, instructing them to record all face-to-face, phone and digital contacts during the day as well as their positive and negative affect. We wanted to see how positive and negative affect spread around a social network while taking into account participants’ socio-demographic data, personality, general health and gratitude scores. We focused on the participants’ connections with those in their class; excluding friends and family outside this group. The data was analysed using actor-based models implemented in SIENA. Results show differences between positive and negative affect dynamics in this environment and an influence of personality traits on the average number and rate of communication.