992 resultados para Porcine circovirus-2


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project explores employees’ adoption of Web 2.0 within organisations. It shows that the adoption of Web 2.0 is a challenging and dynamic process that changes over time. The adoption is, also, influenced by a number of interrelated issues including: People Traits, Social Influence, Trust, Technological Attributes, Relevance of Web 2.0, Web 2.0 Maturity, Organisational Support, and Organisational Practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We assessed whether alternative transcripts (using KLK2, KLK3 and KLK4 as models) are differentially regulated by androgens and anti-androgens as an indicator of prostate cancers as they acquire treatment resistance. Using RNAseq of LNCaP cells treated with dihydrotestosterone, bicalutamide and enzalutamide, we show that the expression of variant KLK transcripts is markedly different to other variant transcripts at those loci. We also reveal that KLK variants are also over 2-fold more highly expressed in prostate cancers compared to their corresponding normal prostate. We propose that androgens and anti-androgens can activate specific variant transcripts of critical prostate cancer genes during treatment resistance

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Collagen crosslinking (CXL) has shown promising results in the prevention of the progression of keratoconus and corneal ectasia. However, techniques for in vivo and in situ assessment of the treatment are limited. In this study, ex vivo porcine eyes were treated with a chemical CXL agent (glutaraldehyde), during which polarization sensitive optical coherence tomography (PS-OCT) recordings were acquired simultaneously to assess the sensitivity of the technique to assess changes in the cornea. The results obtained in this study suggest that PS-OCT may be a suitable technique to measure CXL changes in situ and to assess the local changes in the treated region of the cornea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The economics of supporting learning has seen institutional encouragement of a wide range of blended learning initiatives in face to face and online teaching and learning. This has become one of the key drivers for the adoption of technology in teaching, in a manner occassionally guilty of putting the cart before the horse. Learning spaces are increasingly equipped with a dizzying array of technological options testifying to institutional and governmental investment and commitment in supporting face to face blended learning (QUT, 2011, C/4.2). Yet innovation within traditional learning and teaching models faces a number of challenges both at an institutional level and at the teaching coal face. Web 2.0 technologies present a vast array of opportunities to harness and capture the attention of students in engaging learning opportunitites. This presentation will explore technologies supportive of active learning pedagogies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Weak links were fabricated by pulsed laser deposition of YBa 2Cu3Ox thin films on Y-ZrO2 bicrystal substrates. They were formed by transferring the bicrystal boundary into the epitaxial film during the film growth. Their properties were determined by the misorientation angle ( theta ) between the two halves of the bicrystal. The transport properties of the weak links were studied as a function of theta and an exponential dependence of the weak link critical current density was observed for angles up to 45 degrees . Clear Josephson effects with good microwave and magnetic field response were observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis represents a step forward in the development of a pre-clinical model investigating a suitable substitute for host bone for use in human spinal fusion. By way of an animal model, it examines the biological performance of a novel bone graft substitute comprised of a combination of a custom-designed biodegradable material and biologics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chemically reversible solid−solid phase transformation of a TCNQ-modified glassy carbon, indium tin oxide, or metal electrode into Co\[TCNQ]2(H2O)2 material in the presence of Co2+(aq) containing electrolytes has been induced and monitored electrochemically. Voltammetric data reveal that the TCNQ/Co\[TCNQ]2(H2O)2 interconversion process is independent of electrode material and identity of cobalt electrolyte anion. However, a marked dependence on electrolyte concentration, scan rate, and method of electrode modification (drop casting or mechanical attachment) is found. Cyclic voltammetric and double potential step chronoamperometric measurements confirm that formation of Co\[TCNQ]2(H2O)2 occurs through a rate-determining nucleation and growth process that initially involves incorporation of Co2+(aq) ions into the reduced TCNQ crystal lattice at the TCNQ|electrode|electrolyte interface. Similarly, the reverse (oxidation) process, which involves transformation of solid Co\[TCNQ]2(H2O)2 back to parent TCNQ crystals, also is controlled by nucleation−growth kinetics. The overall chemically reversible process that represents this transformation is described by the reaction:  2TCNQ0(s) + 2e- + Co2+(aq) + 2H2O \[Co(TCNQ)2(H2O)2](s). Ex situ SEM images illustrated that this reversible TCNQ/Co\[TCNQ]2(H2O)2 conversion process is accompanied by drastic size and morphology changes in the parent solid TCNQ. In addition, different sizes of needle-shaped nanorod/nanowire crystals of Co\[TCNQ]2(H2O)2 are formed depending on the method of surface immobilization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unlike the case with other divalent transition metal M\[TCNQ](2)(H(2)O)(2) (M = Fe, Co, Ni) analogues, the electrochemically induced solid-solid phase interconversion of TCNQ microcrystals (TCNQ = 7,7,8,8-tetracyanoquinodimethane) to Mn\[TCNQ](2)(H(2)O)(2) occurs via two voltammetrically distinct, time dependent processes that generate the coordination polymer in nanofiber or rod-like morphologies. Careful manipulation of the voltammetric scan rate, electrolysis time, Mn(2+)((aq)) concentration, and the method of electrode modification with solid TCNQ allows selective generation of either morphology. Detailed ex situ spectroscopic (IR, Raman), scanning electron microscopy (SEM), and X-ray powder diffraction (XRD) characterization clearly establish that differences in the electrochemically synthesized Mn-TCNQ material are confined to morphology. Generation of the nanofiber form is proposed to take place rapidly via formation and reduction of a Mn-stabilized anionic dimer intermediate, \[(Mn(2+))(TCNQ-TCNQ)(2)(*-)], formed as a result of radical-substrate coupling between TCNQ(*-) and neutral TCNQ, accompanied by ingress of Mn(2+) ions from the aqueous solution at the triple phase TCNQ/electrode/electrolyte boundary. In contrast, formation of the nanorod form is much slower and is postulated to arise from disproportionation of the \[(Mn(2+))(TCNQ-TCNQ)(*-)(2)] intermediate. Thus, identification of the time dependent pathways via the solid-solid state electrochemical approach allows the crystal size of the Mn\[TCNQ](2)(H(2)O)(2) material to be tuned and provides new mechanistic insights into the formation of different morphologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical formation of highly porous CuTCNQ (TCNQ = 7,7,8,8-tetracyanoquinodimethane) and CuTCNQF4 (TCNQF4 = 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane) materials was undertaken via the spontaneous redox reaction between a porous copper template, created using a hydrogen bubbling template technique, and an acetonitrile solution containing TCNQ or TCNQF4. It was found that activation of the surface via vigorous hydrogen evolution that occurs during porous copper deposition and TCNQ mass transport being hindered through the porous network of the copper template influenced the growth of CuTCNQ and CuTCNQF4. This approach resulted in the fabrication of a honeycomb layered type structure where the internal walls consist of very fine crystalline needles or spikes. This combination of microscopic and nanoscopic roughness was found to be extremely beneficial for anti-wetting properties where superhydrophobic materials with contact angles as high as 177° were created. Given that CuTCNQ and CuTCNQF4 have shown potential as molecular based electronic materials in the area of switching and field emission, the creation of a surface that is moisture resistant may be of applied interest.