967 resultados para Pluto (Dwarf planet)
Resumo:
Background and aim Concentrations of essential minerals in plant foods may have declined in modern high-yielding cultivars grown with large applications of nitrogen fertilizer (N). We investigated the effect of dwarfing alleles and N rate on mineral concentrations in wheat. Methods Gibberellin (GA)-insensitive reduced height (Rht) alleles were compared in near isogenic wheat lines. Two field experiments comprised factorial combinations of wheat variety backgrounds, alleles at the Rht-B1 locus (rht-B1a, Rht-B1b, Rht-B1c), and different N rates. A glasshouse experiment also included Rht-D1b and Rht-B1b+D1b in one background. Results In the field, depending on season, Rht-B1b increased crop biomass, dry matter (DM) harvest index, grain yield, and the economically-optimal N rate (Nopt). Rht-B1b did not increase uptake of Cu, Fe, Mg or Zn so these minerals were diluted in grain. Nitrogen increased DM yield and mineral uptake so grain concentrations were increased (Fe in both seasons; Cu, Mg and Zn in one season). Rht-B1b reduced mineral concentrations at Nopt in the most N responsive season. In the glasshouse experiment, grain yield was reduced, and mineral concentrations increased, with Rht allele addition. Conclusion Effects of Rht alleles on Fe, Zn, Cu and Mg concentrations in wheat grain are mostly due to their effects on DM, rather than of GA-insensitivity on Nopt or mineral uptake. Increased N requirement in semi-dwarf varieties partly offsets this dilution effect.
Resumo:
This week in the Planet Earth Podcast: the cunning tricks the cuckoo uses to get another bird to do the parenting, why researchers are studying snow in Sweden, and how an improved radiocarbon dating technique may put a few scientists' noses out of joint.
Resumo:
One of the recurrent themes in the debate around how to ensure global food security concerns the capacity of the planet to support its growing population. Neo-Malthusian thinking suggests that we are in a situation in which further expansion of the population cannot be supported and that the population checks, with their dismal consequences envisaged by Malthus, will lead to a new era of stagnant incomes and population. More sophisticated models of the link between population and income are less gloomy however. They see population growth as an integral component of the economic growth which is necessary to ensure that the poorest achieve food security. An undue focus on the difficulties of meeting the demands of the increasing population risks damaging this growth. Instead, attention should be focused on ensuring that the conditions to ensure that economic growth accompanies population growth are in place.
Resumo:
The Intergovernmental Panel on Climate Change fourth assessment report, published in 2007 came to a more confident assessment of the causes of global temperature change than previous reports and concluded that ‘it is likely that there has been significant anthropogenic warming over the past 50 years averaged over each continent except Antarctica.’ Since then, warming over Antarctica has also been attributed to human influence, and further evidence has accumulated attributing a much wider range of climate changes to human activities. Such changes are broadly consistent with theoretical understanding, and climate model simulations, of how the planet is expected to respond. This paper reviews this evidence from a regional perspective to reflect a growing interest in understanding the regional effects of climate change, which can differ markedly across the globe. We set out the methodological basis for detection and attribution and discuss the spatial scales on which it is possible to make robust attribution statements. We review the evidence showing significant human-induced changes in regional temperatures, and for the effects of external forcings on changes in the hydrological cycle, the cryosphere, circulation changes, oceanic changes, and changes in extremes. We then discuss future challenges for the science of attribution. To better assess the pace of change, and to understand more about the regional changes to which societies need to adapt, we will need to refine our understanding of the effects of external forcing and internal variability
Resumo:
Widely distributed proxy records indicate that the Medieval Climate Anomaly (MCA; *900–1350 AD) was characterized by coherent shifts in large-scale Northern Hemisphere atmospheric circulation patterns. Although cooler sea surface temperatures in the central and eastern equatorial Pacific can explain some aspects of medieval circulation changes, they are not sufficient to account for other notable features, including widespread aridity through the Eurasian sub-tropics, stronger winter westerlies across the North Atlantic and Western Europe, and shifts in monsoon rainfall patterns across Africa and South Asia. We present results from a full-physics coupled climate model showing that a slight warming of the tropical Indian and western Pacific Oceans relative to the other tropical ocean basins can induce a broad range of the medieval circulation and climate changes indicated by proxy data, including many of those not explained by a cooler tropical Pacific alone. Important aspects of the results resemble those from previous simulations examining the climatic response to the rapid Indian Ocean warming during the late twentieth century, and to results from climate warming simulations—especially in indicating an expansion of the Northern Hemisphere Hadley circulation. Notably, the pattern of tropical Indo-Pacific sea surface temperature (SST) change responsible for producing the proxy-model similarity in our results agrees well with MCA-LIA SST differences obtained in a recent proxy-based climate field reconstruction. Though much remains unclear, our results indicate that the MCA was characterized by an enhanced zonal Indo-Pacific SST gradient with resulting changes in Northern Hemisphere tropical and extra-tropical circulation patterns and hydroclimate regimes, linkages that may explain the coherent regional climate shifts indicated by proxy records from across the planet. The findings provide new perspectives on the nature and possible causes of the MCA—a remarkable, yet incompletely understood episode of Late Holocene climatic change.
Resumo:
This paper develops a conceptual framework for analyzing emerging agricultural hydrology problems in post-conflict Libya. Libya is one of the most arid regions on the planet. Thus, as well as substantial political and social changes, post-conflict Libyan administrators are confronted with important hydrological issues in Libya’s emerging water-landuse complex. This paper presents a substantial background to the water-land-use problem in Libya; reviews previous work in Libya and elsewhere on water-land-use issues and water-land-use conflicts in the dry and arid zones; outlines a conceptual framework for fruitful research interventions; and details the results of a survey conducted on Libyan farmers’ water usage, perceptions of emerging water-land-use conflicts and the appropriate value one should place on agricultural-use hydrological resources in Libya. Extensions are discussed.
Resumo:
In order to influence global policy effectively, conservation scientists need to be able to provide robust predictions of the impact of alternative policies on biodiversity and measure progress towards goals using reliable indicators. We present a framework for using biodiversity indicators predictively to inform policy choices at a global level. The approach is illustrated with two case studies in which we project forwards the impacts of feasible policies on trends in biodiversity and in relevant indicators. The policies are based on targets agreed at the Convention on Biological Diversity (CBD) meeting in Nagoya in October 2010. The first case study compares protected area policies for African mammals, assessed using the Red List Index; the second example uses the Living Planet Index to assess the impact of a complete halt, versus a reduction, in bottom trawling. In the protected areas example, we find that the indicator can aid in decision-making because it is able to differentiate between the impacts of the different policies. In the bottom trawling example, the indicator exhibits some counter-intuitive behaviour, due to over-representation of some taxonomic and functional groups in the indicator, and contrasting impacts of the policies on different groups caused by trophic interactions. Our results support the need for further research on how to use predictive models and indicators to credibly track trends and inform policy. To be useful and relevant, scientists must make testable predictions about the impact of global policy on biodiversity to ensure that targets such as those set at Nagoya catalyse effective and measurable change.
Resumo:
Development of an efficient tissue culture protocol in coconut is hampered by numerous technical constraints. Thus a greater understanding of the fundamental aspects of embryogenesis is essential. The role of AINTEGUMENTA-like genes in embryogenesis has been elucidated not only in model plants but also in economically important crops. A coconut gene, CnANT, that encodes two APETALA2 (AP2) domains and a conserved linker region similar to those of the BABY BOOM transcription factor was cloned, characterized, and its tissue specific expression was examined. The full-length cDNA of 1,780 bp contains a 1,425-bp open reading frame that encodes a putative peptide of 474 amino acids. The genomic DNA sequence includes 2,317 bp and consists of nine exons interrupted by eight introns. The exon/intron organization of CnANT is similar to that of homologous genes in other plant species. Analysis of differential tissue expression by real-time polymerase chain reaction indicated that CnANT is expressed more highly in in vitro grown tissues than in other vegetative tissues. Sequence comparison of the genomic sequence of CnANT in different coconut varieties revealed one single nucleotide polymorphism and one indel in the first exon and first intron, respectively, which differentiate the Tall group of trees from Dwarfs. The indel sequence, which can be considered a simple sequence repeats marker, was successfully used to distinguish the Tall and Dwarf groups as well as to develop a marker system, which may be of value in the identification of parental varieties that are used in coconut breeding programs in Sri Lanka.
Resumo:
This Atlas presents statistical analyses of the simulations submitted to the Aqua-Planet Experiment (APE) data archive. The simulations are from global Atmospheric General Circulation Models (AGCM) applied to a water-covered earth. The AGCMs include ones actively used or being developed for numerical weather prediction or climate research. Some are mature, application models and others are more novel and thus less well tested in Earth-like applications. The experiment applies AGCMs with their complete parameterization package to an idealization of the planet Earth which has a greatly simplified lower boundary that consists of an ocean only. It has no land and its associated orography, and no sea ice. The ocean is represented by Sea Surface Temperatures (SST) which are specified everywhere with simple, idealized distributions. Thus in the hierarchy of tests available for AGCMs, APE falls between tests with simplified forcings such as those proposed by Held and Suarez (1994) and Boer and Denis (1997) and Earth-like simulations of the Atmospheric Modeling Intercomparison Project (AMIP, Gates et al., 1999). Blackburn and Hoskins (2013) summarize the APE and its aims. They discuss where the APE fits within a modeling hierarchy which has evolved to evaluate complete models and which provides a link between realistic simulation and conceptual models of atmospheric phenomena. The APE bridges a gap in the existing hierarchy. The goals of APE are to provide a benchmark of current model behaviors and to stimulate research to understand the cause of inter-model differences., APE is sponsored by the World Meteorological Organization (WMO) joint Commission on Atmospheric Science (CAS), World Climate Research Program (WCRP) Working Group on Numerical Experimentation (WGNE). Chapter 2 of this Atlas provides an overview of the specification of the eight APE experiments and of the data collected. Chapter 3 lists the participating models and includes brief descriptions of each. Chapters 4 through 7 present a wide variety of statistics from the 14 participating models for the eight different experiments. Additional intercomparison figures created by Dr. Yukiko Yamada in AGU group are available at http://www.gfd-dennou.org/library/ape/comparison/. This Atlas is intended to present and compare the statistics of the APE simulations but does not contain a discussion of interpretive analyses. Such analyses are left for journal papers such as those included in the Special Issue of the Journal of the Meteorological Society of Japan (2013, Vol. 91A) devoted to the APE. Two papers in that collection provide an overview of the simulations. One (Blackburn et al., 2013) concentrates on the CONTROL simulation and the other (Williamson et al., 2013) on the response to changes in the meridional SST profile. Additional papers provide more detailed analysis of the basic simulations, while others describe various sensitivities and applications. The APE experiment data base holds a wealth of data that is now publicly available from the APE web site: http://climate.ncas.ac.uk/ape/. We hope that this Atlas will stimulate future analyses and investigations to understand the large variation seen in the model behaviors.
Resumo:
Water vapour plays a key role in the Earth's energy balance. Almost 50% of the absorbed solar radiation at the surface is used to cool the surface, through evaporation, and warm the atmosphere, through release of latent heat. Latent heat is the single largest factor in warming the atmosphere and in transporting heat from low to high latitudes. Water vapour is also the dominant greenhouse gas and contributes to a warming of the climate system by some 24°C (Kondratev 1972). However, water vapour is a passive component in the troposphere as it is uniquely determined by temperature and should therefore be seen as a part of the climate feedback system. In this short overview, we will first describe the water on planet Earth and the role of the hydrological cycle: the way water vapour is transported between oceans and continents and the return of water via rivers to the oceans. Generally water vapour is well observed and analysed; however, there are considerable obstacles to observing precipitation, in particular over the oceans. The response of the hydrological cycle to global warming is far reaching. Because different physical processes control the change in water vapour and evaporation/precipitation, this leads to a more extreme distribution of precipitation making, in general, wet areas wetter and dry areas dryer. Another consequence is a transition towards more intense precipitation. It is to be expected that the changes in the hydrological cycle as a consequence of climate warming may be more severe that the temperature changes.
Resumo:
ESA’s Venus Express Mission has monitored Venus since April 2006, and scientists worldwide have used mathematical models to investigate its atmosphere and model its circulation. This book summarizes recent work to explore and understand the climate of the planet through a research program under the auspices of the International Space Science Institute (ISSI) in Bern, Switzerland. Some of the unique elements that are discussed are the anomalies with Venus’ surface temperature (the huge greenhouse effect causes the surface to rise to 460°C, without which would plummet as low as -40°C), its unusual lack of solar radiation (despite being closer to the Sun, Venus receives less solar radiation than Earth due to its dense cloud cover reflecting 76% back) and the juxtaposition of its atmosphere and planetary rotation (wind speeds can climb up to 200 m/s, much faster than Venus’ sidereal day of 243 Earth-days).
Resumo:
Paul Crutzen (2006) has suggested a research initiative to consider whether it would be feasible to artificially enhance the albedo of the planet Earth to counteract greenhouse warming. The enhancement of albedo would be achieved by intentionally injecting sulfur into the stratosphere. The rational for proposing the experiment is the observed cooling of the atmosphere following the recent major volcanic eruptions by El Chichon in 1984 and Mount Pinatubo in 1991 (Hansen et al., 1992). Although I am principally not against a research initiative to study such a potential experiment, I do have important reservations concerning its general feasibility. And its potential feasibility, I believe, must be the key motivation for embarking on such a study. Here I will bring up three major issues, which must be more thoroughly understood before any geo-engineering of climate could be considered, if at all. The three issues are (i) the lack of accuracy in climate prediction, (ii) the huge difference in timescale between the effect of greenhouse gases and the effect of aerosols and (iii) serious environmental problems which may be caused by high carbon dioxide concentration irrespective of the warming of the climate.
Resumo:
Severe tropical cyclones (called hurricanes in the North Atlantic and northeast Pacific) can cause loss of human lives and serious economic damage. In his Perspective, Bengtsson charts the current knowledge about how hurricanes form and whether long-term trends can be discerned in the past century or predicted for a future warmer planet. He also discusses the report by Goldenberg et al., who have analyzed hurricane activity in the North Atlantic and the Caribbean over much of the past century.
Resumo:
This chapter examines encounters between international institutions that frame their objectives through a global policy language, and people whose lives are the focus for change heralded by these institutions. It explores how a global policy language, which seeks consensus and equality, can be at odds with local understandings, conflict and intentions.