903 resultados para Plasticity
Resumo:
Y2SiO5 has potential applications as functional-structural ceramic and environmental/thermal barrier coating material. As an important grain-boundary phase in the sintered Si3N4, it also influences the mechanical and dielectric performances of the host material. In this paper, we present the mechanical properties of Y2SiO5 including elastic moduli, hardness, strength and fracture toughness, and try to understand the mechanical features from the viewpoint of crystal structure. Y2SiO5 has low shear modulus, low hardness, as well as high capacity for dispersing mechanical damage energy and for resisting crack penetration. Particularly, it can be machined by cemented carbides tools. The crystal structure characteristics of Y2SiO5 suggest the low-energy weakly bonded atomic planes crossed only by the easily breaking Y-O bonds as well as the rotatable rigid SiO4 tetrahedra are the origins of low shear deformation, good damage tolerance and good machinability of this material. TEM observations also demonstrate that the mechanical damage energy was dispersed in the form of the micro-cleavages, stacking faults and twins along these weakly bonded atomic planes, which allows the "microscale-plasticity" for Y2SiO5.
Resumo:
In this work, the effect of crack tip constraint on near-tip stress and deformation fields in a ductile FCC single crystal is studied under mode I, plane strain conditions. To this end, modified boundary layer simulations within crystal plasticity framework are performed, neglecting elastic anisotropy. The first and second terms of the isotropic elastic crack tip field, which are governed by the stress intensity factor K and T-stress, are prescribed as remote boundary conditions and solutions pertaining to different levels of T-stress are generated. It is found that the near-tip deformation field, especially, the development of kink or slip shear bands, is sensitive to the constraint level. The stress distribution and the size and shape of the plastic zone near the crack tip are also strongly influenced by the level of T-stress, with progressive loss of crack tip constraint occurring as T-stress becomes more negative. A family of near-tip fields is obtained which are characterized by two terms (such as K and T or J and a constraint parameter Q) as in isotropic plastic solids.
Resumo:
The well known features of crack face interpenetration/contact at the tip of an interface crack is re-examined using finite element analysis and assuming material nonlinear properties for the adherends. It was assumed in literature that the crack tips are fully open at all load levels in the presence of material nonlinearity of the adherends. Analysis for the case of remote tension shows that even in the presence of material nonlinearity, crack tip closes at small load levels and opens above a certain load level. Mixed-mode fracture parameters are evaluated for the situation when the crack tips are fully open. Due to the presence of nonlinearity, the mixed-mode fracture parameters are measured with the symmetric and anti-symmetric components of J-integral. The present analysis explains the sequence of events at the interface crack tip with progressively increasing remote tension load for the case of adherends with material nonlinear behaviour.
Resumo:
Androgen targeted therapies (ATT) are the most commonly used treatments in prostate cancer (PCa).While these therapies are initially effective, PCa cells are able to activate adaptive response pathways to survive these therapies and progress to castration resistant PCa (CRPC), a highly aggressive and ultimately lethal stage of the disease. Neuroendocrine transdifferentiation (NEtD), a process whereby PCa cells gain neuroendocrinelike characteristics, has been implicated in the development of CRPC. The objective of this study is to develop and characterise models of therapy-induced NEtD to investigate the role of this adaptive plasticity in the progression to CRPC.
Resumo:
Despite recent recognition that the epithelial-mesenchymal transition (EMT) program acts in a dynamic manner (termed Epithelial to Mesenchymal Plasticity or EMP) during carcinoma metastasis, it has largely been ignored in the discovery and development of EMT-targeted therapies. In part, this has stemmed from a lack of preclinical models that can mimic the full dynamic nature of EMP and the perception that the EMT-reverting transition [or mesenchymal-epithelial reverting transition; (MErT)] is a mere antithesis of EMT. The objective of this study was to develop the first PCa model capable of recapitulating the dynamic nature of EMP.
Resumo:
We report a combined experimental and computational study of a low constraint aluminum single crystal fracture geometry and investigate the near-tip stress and strain fields. To this end, a single edge notched tensile (SENT) specimen is considered. A notch, with a radius of 50 µm, is taken to lie in the (010) plane and its front is aligned along the [101] direction. Experiments are conducted by subjecting the specimen to tensile loading using a special fixture inside a scanning electron microscope chamber. Both SEM micrographs and electron back-scattered diffraction (EBSD) maps are obtained from the near-tip region. The experiments are complemented by performing 3D and 2D plane strain finite element simulations within a continuum crystal plasticity framework assuming an isotropic hardening response characterized by the Pierce–Asaro–Needleman model. The simulations show a distinct slip band forming at about 55 deg with respect to the notch line corresponding to slip on (11-bar 1)[011] system, which corroborates well with experimental data. Furthermore, two kink bands occur at about 45 deg and 90 deg with respect to the notch line within which large rotations in the crystal orientation take place. These predictions are in good agreement with the EBSD observations. Finally, the near-tip angular variations of the 3D stress and plastic strain fields in the low constraint SENT fracture geometry are examined in detail.
Resumo:
Tactile sensation plays an important role in everyday life. While the somatosensory system has been studied extensively, the majority of information has come from studies using animal models. Recent development of high-resolution anatomical and functional imaging techniques has enabled the non-invasive study of human somatosensory cortex and thalamus. This thesis provides new insights into the functional organization of the human brain areas involved in tactile processing using magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI). The thesis also demonstrates certain optimizations of MEG and fMRI methods. Tactile digit stimulation elicited stimulus-specific responses in a number of brain areas. Contralateral activation was observed in somatosensory thalamus (Study II), primary somatosensory cortex (SI; I, III, IV), and post-auditory belt area (III). Bilateral activation was observed in secondary somatosensory cortex (SII; II, III, IV). Ipsilateral activation was found in the post-central gyrus (area 2 of SI cortex; IV). In addition, phasic deactivation was observed within ipsilateral SI cortex and bilateral primary motor cortex (IV). Detailed investigation of the tactile responses demonstrated that the arrangement of distal-proximal finger representations in area 3b of SI in humans is similar to that found in monkeys (I). An optimized MEG approach was sufficient to resolve such fine detail in functional organization. The SII region appeared to contain double representations for fingers and toes (II). The detection of activations in the SII region and thalamus improved at the individual and group levels when cardiac-gated fMRI was used (II). Better detection of body part representations at the individual level is an important improvement, because identification of individual representations is crucial for studying brain plasticity in somatosensory areas. The posterior auditory belt area demonstrated responses to both auditory and tactile stimuli (III), implicating this area as a physiological substrate for the auditory-tactile interaction observed in earlier psychophysical studies. Comparison of different smoothing parameters (III) demonstrated that proper evaluation of co-activation should be based on individual subject analysis with minimal or no smoothing. Tactile input consistently influenced area 3b of the human ipsilateral SI cortex (IV). The observed phasic negative fMRI response is proposed to result from interhemispheric inhibition via trans-callosal connections. This thesis contributes to a growing body of human data suggesting that processing of tactile stimuli involves multiple brain areas, with different spatial patterns of cortical activation for different stimuli.
Resumo:
We demonstrate that irradiation may enhance the plasticity in metallic glasses by increasing the free-volume content via micropillar compression experiments on an ion-irradiated bulk metallic glass (BMG). Results show that irradiation decreases the flow stress and enhances the shear band formation by lowering the magnitude of stress serrations in plastic flow regime. These results highlight that amorphous alloys can mitigate the deleterious affects of severe ion irradiation as compared to their crystalline counterparts. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The goals of this article are to integrate action regulation theory (ART) with the lifespan developmental perspective and to outline tenets of a new metatheory of work and aging. The action regulation across the adult lifespan (ARAL) theory explains how workers influence, and are influenced by, their environment across different time spans. First, the basic concepts of ART are described, including the sequential and hierarchical structure of actions, complete tasks and actions, foci of action regulation, and the action-regulating mental model. Second, principles of the lifespan developmental perspective are delineated, including development as a lifelong and multidirectional process, the joint occurrence of gains and losses, intraindividual plasticity, historical embeddedness, and contextualism. Third, propositions of ARAL theory are derived by analyzing workers’ action regulation from a lifespan developmental perspective (i.e., effects of aging on action regulation), and by analyzing aging and development in the work context from an ART perspective (i.e., effects of action regulation on age-related changes in cognition and personality). Fourth, we develop further propositions to integrate ART with lifespan theories of motivation and socioemotional experience. Finally, we discuss implications for future research and practice based on ARAL theory.
Resumo:
Phenotypic flexibility, or the within-genotype, context-dependent, variation in behaviour expressed by single reproductively mature individuals during their lifetimes, often impart a selective advantage to organisms and profoundly influence their survival and reproduction. Another phenomenon apparently not under direct genetic control is behavioural inheritance whereby higher animals are able to acquire information from the behaviour of others by social learning, and, through their own modified behaviour, transmit such information between individuals and across generations. Behavioural information transfer of this nature thus represents another form of inheritance that operates in many animals in tandem with the more basic genetic system. This paper examines the impact that phenotypic flexibility, behavioural inheritance and socially transmitted cultural traditions may have in shaping the structure and dynamics of a primate society--that of the bonnet macaque (Macaca radiata), a primate species endemic to peninsular India. Three principal issues are considered: the role of phenotypic flexibility in shaping social behaviour, the occurrence of individual behavioural traits leading to the establishment of social traditions, and the appearance of cultural evolution amidst such social traditions. Although more prolonged observations are required, these initial findings suggest that phenotypic plasticity, behavioural inheritance and cultural traditions may be much more widespread among primates than have previously been assumed but may have escaped attention due to a preoccupation with genetic inheritance in zoological thinking.
Resumo:
This thesis comprises four intercomplementary parts that introduce new approaches to brittle reaction layers and mechanical compatibility of metalloceramic joints created when fusing dental ceramics to titanium. Several different methods including atomic layer deposition (ALD), sessile drop contact angle measurements, scanning acoustic microscopy (SAM), three-point bending (TPB, DIN 13 927 / ISO 9693), cross-section microscopy, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS) were employed. The first part investigates the effects of TiO2 layer structure and thickness on the joint strength of the titanium-metalloceramic system. Samples with all tested TiO2 thicknesses displayed good ceramics adhesion to Ti, and uniform TPB results. The fracture mode was independent of oxide layer thickness and structure. Cracking occurred deeper inside titanium, in the oxygen-rich Ti[O]x solid solution surface layer. During dental ceramics firing TiO2 layers dissociate and joints become brittle with increased dissolution of oxygen into metallic Ti and consequent reduction in the metal plasticity. To accomplish an ideal metalloceramic joint this needs to be resolved. The second part introduces photoinduced superhydrophilicity of TiO2. Test samples with ALD deposited anatase TiO2 films were produced. Samples were irradiated with UV light to induce superhydrophilicity of the surfaces through a cascade leading to increased amount of surface hydroxyl groups. Superhydrophilicity (contact angle ~0˚) was achieved within 2 minutes of UV radiation. Partial recovery of the contact angle was observed during the first 10 minutes after UV exposure. Total recovery was not observed within 24h storage. Photoinduced ultrahydrophilicity can be used to enhance wettability of titanium surfaces, an important factor in dental ceramics veneering processes. The third part addresses interlayers designed to restrain oxygen dissolution into Ti during dental ceramics fusing. The main requirements for an ideal interlayer material are proposed. Based on these criteria and systematic exclusion of possible interlayer materials silver (Ag) interlayers were chosen. TPB results were significantly better in when 5 μm Ag interlayers were used compared to only Al2O3-blasted samples. In samples with these Ag interlayers multiple cracks occurred inside dental ceramics, none inside Ti structure. Ag interlayers of 5 μm on Al2O3-blasted samples can be efficiently used to retard formation of the brittle oxygen-rich Ti[O]x layer, thus enhancing metalloceramic joint integrity. The most brittle component in metalloceramic joints with 5 μm Ag interlayers was bulk dental ceramics instead of Ti[O]x. The fourth part investigates the importance of mechanical interlocking. According to the results, the significance of mechanical interlocking achieved by conventional surface treatments can be questioned as long as the formation of the brittle layers (mainly oxygen-rich Ti[O]x) cannot be sufficiently controlled. In summary in contrast to former impressions of thick titanium oxide layers this thesis clearly demonstrates diffusion of oxygen from sintering atmosphere and SiO2 to Ti structures during dental ceramics firing and the following formation of brittle Ti[O]x solid solution as the most important factors predisposing joints between Ti and SiO2-based dental ceramics to low strength. This among other predisposing factors such as residual stresses created by the coefficient of thermal expansion mismatch between dental ceramics and Ti frameworks can be avoided with Ag interlayers.
Resumo:
Listening to music involves a widely distributed bilateral network of brain regions that controls many auditory perceptual, cognitive, emotional, and motor functions. Exposure to music can also temporarily improve mood, reduce stress, and enhance cognitive performance as well as promote neural plasticity. However, very little is currently known about the relationship between music perception and auditory and cognitive processes or about the potential therapeutic effects of listening to music after neural damage. This thesis explores the interplay of auditory, cognitive, and emotional factors related to music processing after a middle cerebral artery (MCA) stroke. In the acute recovery phase, 60 MCA stroke patients were randomly assigned to a music listening group, an audio book listening group, or a control group. All patients underwent neuropsychological assessments, magnetoencephalography (MEG) measurements, and magnetic resonance imaging (MRI) scans repeatedly during a six-month post-stroke period. The results revealed that amusia, a deficit of music perception, is a common and persistent deficit after a stroke, especially if the stroke affects the frontal and temporal brain areas in the right hemisphere. Amusia is clearly associated with deficits in both auditory encoding, as indicated by the magnetic mismatch negativity (MMNm) response, and domain-general cognitive processes, such as attention, working memory, and executive functions. Furthermore, both music and audio book listening increased the MMNm, whereas only music listening improved the recovery of verbal memory and focused attention as well as prevented a depressed and confused mood during the first post-stroke months. These findings indicate a close link between musical, auditory, and cognitive processes in the brain. Importantly, they also encourage the use of listening to music as a rehabilitative leisure activity after a stroke and suggest that the auditory environment can induce long-term plastic changes in the recovering brain.
Resumo:
In this paper, modes I and II crack tip fields in polycrystalline plastic solids are studied under plane strain, small scale yielding conditions. Two different initial textures of an Al–Mg alloy, viz., continuous cast AA5754 sheets in the recrystallized and cold rolled conditions, are considered. The former is nearly-isotropic, while the latter displays distinct anisotropy. Finite element simulations are performed by employing crystal plasticity constitutive equations along with a Taylor-type homogenization as well as by using the Hill quadratic yield theory. It is found that significant texture evolution occurs close to the notch tip which profoundly influences the stress and plastic strain distributions. Also, the cold rolling texture gives rise to higher magnitude of plastic strain near the tip.
Resumo:
The swelling pressure of soil depends upon various soil parameters such as mineralogy, clay content, Atterberg's limits, dry density, moisture content, initial degree of saturation, etc. along with structural and environmental factors. It is very difficult to model and analyze swelling pressure effectively taking all the above aspects into consideration. Various statistical/empirical methods have been attempted to predict the swelling pressure based on index properties of soil. In this paper, the computational intelligence techniques artificial neural network and support vector machine have been used to develop models based on the set of available experimental results to predict swelling pressure from the inputs; natural moisture content, dry density, liquid limit, plasticity index, and clay fraction. The generalization of the model to new set of data other than the training set of data is discussed which is required for successful application of a model. A detailed study of the relative performance of the computational intelligence techniques has been carried out based on different statistical performance criteria.
Resumo:
In this paper, modes I and II crack tip fields in polycrystalline plastic solids are studied under plane strain, small scale yielding conditions. Two different initial textures of an Al-Mg alloy, viz.,continuous cast AA5754 sheets in the recrystallized and cold rolled conditions, are considered. The former is nearly-isotropic, while the latter displays distinct anisotropy. Finite element simulations are performed by employing crystal plasticity constitutive equations along with a Taylor-type homogenization as well as by using the Hill quadratic yield theory. It is found that significant texture evolution occurs close to the notch tip which profoundly influences the stress and plastic strain distributions. Also, the cold rolling texture gives rise to higher magnitude of plastic strain near the tip. (C) 2010 Elsevier Ltd. All rights reserved.