992 resultados para Plasma formation
Resumo:
Power system organization has gone through huge changes in the recent years. Significant increase in distributed generation (DG) and operation in the scope of liberalized markets are two relevant driving forces for these changes. More recently, the smart grid (SG) concept gained increased importance, and is being seen as a paradigm able to support power system requirements for the future. This paper proposes a computational architecture to support day-ahead Virtual Power Player (VPP) bid formation in the smart grid context. This architecture includes a forecasting module, a resource optimization and Locational Marginal Price (LMP) computation module, and a bid formation module. Due to the involved problems characteristics, the implementation of this architecture requires the use of Artificial Intelligence (AI) techniques. Artificial Neural Networks (ANN) are used for resource and load forecasting and Evolutionary Particle Swarm Optimization (EPSO) is used for energy resource scheduling. The paper presents a case study that considers a 33 bus distribution network that includes 67 distributed generators, 32 loads and 9 storage units.
Resumo:
This paper presents a new methodology for the creation and management of coalitions in Electricity Markets. This approach is tested using the multi-agent market simulator MASCEM, taking advantage of its ability to provide the means to model and simulate VPP (Virtual Power Producers). VPPs are represented as coalitions of agents, with the capability of negotiating both in the market, and internally, with their members, in order to combine and manage their individual specific characteristics and goals, with the strategy and objectives of the VPP itself. The new features include the development of particular individual facilitators to manage the communications amongst the members of each coalition independently from the rest of the simulation, and also the mechanisms for the classification of the agents that are candidates to join the coalition. In addition, a global study on the results of the Iberian Electricity Market is performed, to compare and analyze different approaches for defining consistent and adequate strategies to integrate into the agents of MASCEM. This, combined with the application of learning and prediction techniques provide the agents with the ability to learn and adapt themselves, by adjusting their actions to the continued evolving states of the world they are playing in.
Resumo:
Negotiation is a fundamental tool for reaching understandings that allow each involved party to gain an advantage for themselves by the end of the process. In recent years, with the increasing of compe-titiveness in most sectors, negotiation procedures become present in practically all of them. One particular environment in which the competitiveness has been increasing exponentially is the electricity markets sector. This work is directed to the study of electricity markets’ partici-pating entities interaction, namely in what concerns the formation, management and operation of aggregating entities – Virtual Power Players (VPPs). VPPs are responsible for managing coalitions of market players with small market negotiating influence, which take strategic advantage in entering such aggregations, to increase their negotiating power. This chapter presents a negotiation methodology for the creation and management of coalitions in Electricity Markets. This approach is tested using MASCEM, taking advantage of its ability to provide the means to model and simulate VPPs. VPPs are represented as coalitions of agents, with the capability of negotiating both in the market, and internally, with their members, in order to combine and manage their individual specific characteristics and goals, with the strategy and objectives of the VPP itself.
Resumo:
Group decision making plays an important role in today’s organisations. The impact of decision making is so high and complex, that rarely the decision making process is made just by one individual. The simulation of group decision making through a Multi-Agent System is a very interesting research topic. The purpose of this paper it to specify the actors involved in the simulation of a group decision, to present a model to the process of group formation and to describe the approach made to implement that model. In the group formation model it is considered the existence of incomplete and negative information, which was identified as crucial to make the simulation closer to the reality.
Resumo:
The magnetic and electrical properties of Ni implanted single crystalline TiO2 rutile were studied for nominal implanted fluences between 0.5 x 10(17) cm(-2) and 2.0 x 10(17) cm(-2) with 150 keV energy, corresponding to maximum atomic concentrations between 9 at% and 27 at% at 65 nm depth, in order to study the formation of metallic oriented aggregates. The results indicate that the as implanted crystals exhibit superparamagnetic behavior for the two higher fluences, which is attributed to the formation of nanosized nickel clusters with an average size related with the implanted concentration, while only paramagnetic behavior is observed for the lowest fluence. Annealing at 1073 K induces the aggregation of the implanted nickel and enhances the magnetization in all samples. The associated anisotropic behavior indicates preferred orientations of the nickel aggregates in the rutile lattice consistent with Rutherford backscattering spectrometry-channelling results. Electrical conductivity displays anisotropic behavior but no magnetoresistive effects were detected. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This work reports on the optoelectronic properties and device application of hydrogenated amorphous silicon carbide (a-Si(1-x)C(x):H) films grown by plasma-enhanced chemical vapour deposition (PECVD). The films with an optical bandgap ranging from about 1.8 to 2.0 eV were deposited in hydrogen diluted silane-methane plasma by varying the radio frequency power. Several n-i-p structures with an intrinsic a-Si(1-x)C(x):H layer of different optical gaps were also fabricated. The optimized devices exhibited a diode ideality factor of 1.4-1.8, and a leakage current of 190-470 pA/cm(2) at -5 V. The density of deep defect states in a-Si(1-x)C(x):H was estimated from the transient dark current measurements and correlated with the optical bandgap and carbon content. Urbach energies for the valence band tail were also determined by analyzing the spectral response within sub-bandgap energy range. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
Nos dias de hoje existe uma grande preocupação da população em fazer uma alimentação mais saudável, uma alimentação que tenha nos seus alimentos elementos que não prejudiquem a saúde mas sim que a tornem mais forte. Um desses elementos que pode trazer benefício para a saúde é o Germânio, elemento de estudo no presente trabalho. Neste trabalho determinou-se a concentração de Germânio em alguns alimentos. Os alimentos usados foram: espargos, ginseng, cogumelos, rabanete, gengibre, aloé vera e alho. Para se fazer a decomposição das amostras foi usada uma solução de ácido nítrico concentrado (67%) e peróxido de hidrogénio (30%), de seguida as soluções resultantes foram analisadas por espectrometria de massa ligado a um plasma acoplado indutivamente (Inductive Coupled Plasma - Mass Spectrometry (ICP-MS)). Esta técnica permitiu estudar os três isótopos mais abundantes de germânio (Ge70, Ge72 e Ge74). Como principais resultados deste trabalho pode-se referir que o alimento que apresenta uma maior concentração de Germânio é o ginseng (243,0 ng/g), seguindo-se o alho (152,6 ng/g). Com concentrações bastante próximas ficaram os espargos, gengibre e cogumelos com um valor aproximado de 75 ng/g. As concentrações mais baixas formam encontradas no aloé vera e rabanete, com valores de 38,16 e 21,85ng/g respectivamente. Com estes resultados podemos concluir que para ter uma alimentação rica neste elemento deve-se ingerir ginseng e alho pois dos alimentos estudados são os mais ricos em Germânio.
Resumo:
In this work, tin selenide thin films (SnSex) were grown on soda lime glass substrates by selenization of dc magnetron sputtered Sn metallic precursors. Selenization was performed at maximum temperatures in the range 300 °C to 570 °C. The thickness and the composition of the films were analysed using step profilometry and energy dispersive spectroscopy, respectively. The films were structurally and optically investigated by X-ray diffraction, Raman spectroscopy and optical transmittance and reflectance measurements. X-Ray diffraction patterns suggest that for temperatures between 300 °C and 470 °C, the films are composed of the hexagonal-SnSe2 phase. By increasing the temperature, the films selenized at maximum temperatures of 530 °C and 570 °C show orthorhombic-SnSe as the dominant phase with a preferential crystal orientation along the (400) crystallographic plane. Raman scattering analysis allowed the assignment of peaks at 119 cm−1 and 185 cm−1 to the hexagonal-SnSe2 phase and those at 108 cm−1, 130 cm−1 and 150 cm−1 to the orthorhombic-SnSe phase. All samples presented traces of condensed amorphous Se with a characteristic Raman peak located at 255 cm−1. From optical measurements, the estimated band gap energies for hexagonal-SnSe2 were close to 0.9 eV and 1.7 eV for indirect forbidden and direct transitions, respectively. The samples with the dominant orthorhombic-SnSe phase presented estimated band gap energies of 0.95 eV and 1.15 eV for indirect allowed and direct allowed transitions, respectively.
Resumo:
Users of wireless devices increasingly demand access to multimedia content with speci c quality of service requirements. Users might tolerate di erent levels of service, or could be satis ed with di erent quality combinations choices. However, multimedia processing introduces heavy resource requirements on the client side. Our work tries to address the growing demand on resources and performance requirements, by allowing wireless nodes to cooperate with each other to meet resource allocation requests and handle stringent constraints, opportunistically taking advantage of the local ad-hoc network that is created spontaneously, as nodes move in range of each other, forming a temporary coalition for service execution. Coalition formation is necessary when a single node cannot execute a speci c service, but it may also be bene cial when groups perform more e ciently when compared to a single s node performance.
Resumo:
Este trabalho visa a obtenção e o estudo das características dos revestimentos de AlN e TiN em substratos metálicos, produzidos por pulverização catódica em plasma magnetrão, num equipamento com cátodo oco, desenvolvido no LEF do CEFITEC. Este equipamento foi adaptado para o presente trabalho, através de alguns elementos adicionais, designadamente de um porta-amostras que permitiu o revestimento de provetes em lotes. Deste estudo conclui-se que a aplicação de uma tensão de “bias” na amostra altera a morfologia dos revestimentos e as características dos materiais que constituem o filme, não só no que diz respeito à sua composição, como também proporciona estruturas mais densas e com menos porosidade. As tensões de “bias” típicas foram de –100 V no caso de AlN e de –75 V e com uma potência de 2,0 kW no cátodo no caso de TiN. Neste último foi considerado apenas o objectivo da obtenção da fase d, de estrutura CFC (cor dourada), por ser a única de interesse industrial. Por difracção de raios x verificou-se a obtenção de TiN e TiN0,9 com as características pretendidas. Também se verificou que as tensões residuais dos filmes são de compressão e isotrópicas.
Resumo:
Hexagonal wireless sensor network refers to a network topology where a subset of nodes have six peer neighbors. These nodes form a backbone for multi-hop communications. In a previous work, we proposed the use of hexagonal topology in wireless sensor networks and discussed its properties in relation to real-time (bounded latency) multi-hop communications in large-scale deployments. In that work, we did not consider the problem of hexagonal topology formation in practice - which is the subject of this research. In this paper, we present a decentralized algorithm that forms the hexagonal topology backbone in an arbitrary but sufficiently dense network deployment. We implemented a prototype of our algorithm in NesC for TinyOS based platforms. We present data from field tests of our implementation, collected using a deployment of fifty wireless sensor nodes.
Resumo:
A novel water soluble organometallic compound, [RuCp(mTPPMSNa)(2,2'-bipy)][CF3SO3] (TM85, where Cp=eta(5)-cyclopentadienyl, mTPPMS = diphenylphosphane-benzene-3-sulfonate and 2,2'-bipy = 2,2'-bipyridine) is presented herein. Studies of interactions with relevant proteins were performed to understand the behavior and mode of action of this complex in the biological environment. Electrochemical and fluorescence studies showed that TM85 strongly binds to albumin. Studies carried out to study the formation of TM85 which adducts with ubiquitin and cytochrome c were performed by electrospray ionization mass spectrometry (ESI-MS). Antitumor activity was evaluated against a variety of human cancer cell lines, namely A2780, A2780cisR, MCF7, MDAMB231, HT29, PC3 and V79 non-tumorigenic cells and compared with the reference drug cisplatin. TM85 cytotoxic effect was reduced in the presence of endocytosis modulators at low temperatures, suggesting an energy-dependent mechanism consistent with endocytosis. Ultrastructural analysis by transmission electron microscopy (TEM) revealed that TM85 targets the endomembranar system disrupting the Golgi and also affects the mitochondria. Disruption of plasma membrane observed by flow cytometry could lead to cellular damage and cell death. On the whole, the biological activity evaluated herein combined with the water solubility property suggests that complex TM85 could be a promising anticancer agent. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
An integration of undoped InOx and commercial ITO thin films into laboratory assembled light shutter devices is made. Accordingly, undoped transparent conductive InOx thin films, about 100 nm thick, are deposited by radiofrequency plasma enhanced reactive thermal evaporation (rf-PERTE) of indium teardrops with no intentional heating of the glass substrates. The process of deposition occurs at very low deposition rates (0.1-0.3 nm/s) to establish an optimized reaction between the oxygen plasma and the metal vapor. These films show the following main characteristics: transparency of 87% (wavelength, lambda = 632.8 nm) and sheet resistance of 52 Omega/sq; while on commercial ITO films the transparency was of 92% and sheet resistance of 83 Omega/sq. The InOx thin film surface characterized by AFM shows a uniform grain texture with a root mean square surface roughness of Rq similar to 2.276 nm. In contrast, commercial ITO topography is characterized by two regions: one smoother with Rq similar to 0.973 nm and one with big grains (Rq similar to 3.617 nm). For the shutters assembled using commercial ITO, the light transmission coefficient (Tr) reaches the highest value (Tr-max) of 89% and the lowest (Tr-min) of 1.3% [13], while for the InOx shutters these values are 80.1% and 3.2%, respectively. Regarding the electric field required to achieve 90% of the maximum transmission in the ON state (E-on), the one presented by the devices assembled with commercial ITO coated glasses is 2.41 V/mu m while the one presented by the devices assembled with InOx coated glasses is smaller, 1.77 V/mu m. These results corroborate the device quality that depends on the base materials and fabrication process used. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
We investigate the structural and thermodynamic properties of a model of particles with 2 patches of type A and 10 patches of type B. Particles are placed on the sites of a face centered cubic lattice with the patches oriented along the nearest neighbor directions. The competition between the self- assembly of chains, rings, and networks on the phase diagram is investigated by carrying out a systematic investigation of this class of models, using an extension ofWertheim's theory for associating fluids and Monte Carlo numerical simulations. We varied the ratio r epsilon(AB)/epsilon(AA) of the interaction between patches A and B, epsilon(AB), and between A patches, epsilon(AA) (epsilon(BB) is set to theta) as well as the relative position of the A patches, i.e., the angle. between the (lattice) directions of the A patches. We found that both r and theta (60 degrees, 90 degrees, or 120 degrees) have a profound effect on the phase diagram. In the empty fluid regime (r < 1/2) the phase diagram is reentrant with a closed miscibility loop. The region around the lower critical point exhibits unusual structural and thermodynamic behavior determined by the presence of relatively short rings. The agreement between the results of theory and simulation is excellent for theta = 120 degrees but deteriorates as. decreases, revealing the need for new theoretical approaches to describe the structure and thermodynamics of systems dominated by small rings. (C) 2014 AIP Publishing LLC.