904 resultados para Plant waste treatment


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study reports the performance of a combined anaerobic-aerobic packed-bed reactor that can be used to treat domestic sewage. Initially, a bench-scale reactor was operated in three experimental phases. In the first phase, the anaerobic reactor was operated with an average organic matter removal efficiency of 77% for a hydraulic retention time (HRT) of 10 h. In the second phase, the reactor was operated with an anaerobic stage followed by an aerobic zone, resulting in a mean value of 91% efficiency. In the third and final phase, the anaerobic-aerobic reactor was operated with recirculation of the effluent of the reactor through the anaerobic zone. The system yielded mean total nitrogen removal percentages of 65 and 75% for recycle ratios (r) of 0.5 and 1.5, respectively, and the chemical oxygen demand (COD) removal efficiencies were higher than 90%. When the pilot-scale reactor was operated with an HRT of 12 h and r values of 1.5 and 3.0, its performance was similar to that observed in the bench-scale unit (92% COD removal for r = 3.0). However, the nitrogen removal was lower (55% N removal for r = 3.0) due to problems with the hydrodynamics in the aerobic zone. The anaerobic-aerobic fixed-bed reactor with recirculation of the liquid phase allows for concomitant carbon and nitrogen removal without adding an exogenous source of electron donors and without requiring any additional alkalinity supplementation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a field experiment performed in Lins County (Sao Paulo State, Brazil), treated sewage effluent (TSE) irrigation increased sugarcane yield but caused an excessive increase in the exchangeable sodium percentage (ESP) and clay dispersion after 16 months due to an intense irrigation regime (2500 mm/16 months) with sodium rich effluents. After two additional complete cycles with lower TSE irrigation rates (1200 mm year(-1)), 1700 kg ha(-1) of phosphogypsum was added to a section of the irrigated plots to evaluate its residence time and its implications on Na+ dynamics and other soil properties. Undisturbed soil cores were taken 2 years after phosphogypsum application to verify soil physical properties up to 0.2 m depth, and disturbed soil samples were taken every year up to 1 m depth for chemical analyses. After 5 years of consecutive TSE irrigation (2005-2010), soil acidity (pH approximate to 5) and basic cations (Ca approximate to 12, Mg approximate to 6 and K approximate to 2 mmol(c) kg(-1)) were maintained in adequate conditions for plant development without the necessity of liming, while acidity was increased (pH approximate to 4.5) and Ca (approximate to 9 mmol(c) kg(-1)), and the Mg (approximate to 4.5 mmol(c) kg(-1)) concentration decreased in the rainfed without phosphogypsum treatment. An increase in water retention capacity at -30 (from 0.14 to 0.17 m(3) m(-3)) and -1500 kPa (from 0.08 to 0.12 m(3) m(-3)) potentials was also observed in all TSE irrigated treatments. The plots with a phosphogypsum treatment showed average increases of 2 mmol(c) kg(-1) of Ca2+ and 7 mg kg(-1) of S-SO42- in all soil profiles and an average reduction of 2 mmol(c) kg(-1) of Na+ up to 0.4 m from 2008 to 2009. However, the extent of the chemical effects was greater after the first year compared to the second year. The high concentration of Na+ found in previous studies performed in the same area returned to low concentrations after continued TSE irrigation at lower rates, even without the phosphogypsum application. An unusual phosphorus migration was observed to the 0.4-0.8 m soil layer as a result of TSE irrigation, most likely due to a high pH and a Na carbonate-dominated TSE. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solar reactors can be attractive in photodegradation processes due to lower electrical energy demand. The performance of a solar reactor for two flow configurations, i.e., plug flow and mixed flow, is compared based on experimental results with a pilot-scale solar reactor. Aqueous solutions of phenol were used as a model for industrial wastewater containing organic contaminants. Batch experiments were carried out under clear sky, resulting in removal rates in the range of 96100?%. The dissolved organic carbon removal rate was simulated by an empirical model based on neural networks, which was adjusted to the experimental data, resulting in a correlation coefficient of 0.9856. This approach enabled to estimate effects of process variables which could not be evaluated from the experiments. Simulations with different reactor configurations indicated relevant aspects for the design of solar reactors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work aimed to evaluate the influence of specific operational conditions on the performance of a spiral-wound ultrafiltration pilot plant for direct drinking water treatment, installed at the Guarapiranga's reservoir, in the Sao Paulo Metropolitan Region. Results from operational tests showed that the volume of permeate produced in the combination of periodic relaxation with flushing and chlorine dosage procedures was 49% higher than the volume obtained when these procedures were not used. Two years of continuous operation demonstrated that the ultrafiltration pilot plant performed better during fall and winter seasons, higher permeate flow production and reduced chemical cleanings frequency. Observed behavior seems to be associated with the algae bloom events in the reservoir, which are more frequent during spring and summer seasons, confirmed by chlorophyll-a analysis results. Concentrate clarification using ferric chloride was quite effective in removing NOM and turbidity, allowing its recirculation to the ultrafiltration feed tank. This procedure made it possible to reach almost 99% water recovery considering a single 54-hour recirculation cycle. Water quality monitoring demonstrated that the ultrafiltration pilot plant was quite efficient, and that potential pathogenic organisms, Escherichia coil and total coliforms, turbidity and apparent color removals were 100%, 95.1%, and 91.5%, respectively. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acute lung injury is an inflammatory condition for which treatment is mainly supportive because effective therapies have not been developed. Cannabidiol, a non-psychotropic cannabinoid component of marijuana (Cannabis sativa), has potent immunosuppressive and anti-inflammatory properties. Therefore, we investigated the possible anti-inflammatory effect of cannabidiol in a murine model of acute lung injury. Analysis of total inflammatory cells and differential in bronchoalveolar lavage fluid was used to characterize leukocyte migration into the lungs; myeloperoxidase activity of lung tissue and albumin concentration in the bronchoalveolar lavage fluid were analyzed by colorimetric assays; cytokine/chemokine production in the bronchoalveolar lavage fluid was also analyzed by Cytometric Bead Arrays and Enzyme-Linked Immunosorbent Assay (ELISA). A single dose of cannabidiol (20 mg/kg) administered prior to the induction of LPS (lipopolysaccharide)-induced acute lung injury decreases leukocyte (specifically neutrophil) migration into the lungs, albumin concentration in the bronchoalveolar lavage fluid, myeloperoxidase activity in the lung tissue, and production of pro-inflammatory cytokines (TNF and IL-6) and chemokines (MCP-1 and MIP-2) 1, 2, and 4 days after the induction of LPS-induced acute lung injury. Additionally, adenosine A(2A) receptor is involved in the anti-inflammatory effects of cannabidiol on LPS-induced acute lung injury because ZM241385 (4-(2[7-Amino-2-(2-furyl)[1,2,4] triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl) phenol) (a highly selective antagonist of adenosine A(2A) receptor) abrogated all of the anti-inflammatory effects of cannabidiol previously described. Thus, we show that cannabidiol has anti-inflammatory effects in a murine model of acute lung injury and that this effect is most likely associated with an increase in the extracellular adenosine offer and signaling through adenosine A(2A) receptor. (C) 2012 Elsevier B. V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Produced water in oil fields is one of the main sources of wastewater generated in the industry. It contains several organic compounds, such as benzene, toluene, ethyl benzene and xylene (BTEX), whose disposal is regulated by law. The aim of this study is to investigate a treatment of produced water integrating two processes, i.e., induced air flotation (IAF) and photo-Fenton. The experiments were conducted in a column flotation and annular lamp reactor for flotation and photodegradation steps, respectively. The first order kinetic constant of IAF for the wastewater studied was determined to be 0.1765 min(-1) for the surfactant EO 7. Degradation efficiencies of organic loading were assessed using factorial planning. Statistical data analysis shows that H2O2 concentration is a determining factor in process efficiency. Degradations above 90% were reached in all cases after 90 min of reaction, attaining 100% mineralization in the optimized concentrations of Fenton reagents. Process integration was adequate with 100% organic load removal in 20 min. The results of the integration of the IAF with the photo-Fenton allowed to meet the effluent limits established by Brazilian legislation for disposal. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of contemporary environmental issues refers to progressive and diverse generation of solid waste in urban areas or specific, and requires solutions because the traditional methods of treatment and disposal are becoming unviable over the years and, consequently, a significant contingent of these wastes presents final destination inappropriate. The diversity of solid waste generated as a result of human activities must have the appropriate allocation to specific legislation in force, such as landfill, incineration, among other procedures established by the competent bodies. Thus, also the waste generated in port activities or proceeding vessels require classification and segregation for proper disposal later. This article aims at presenting a methodology for the collection, transportation, treatment and disposal of solid waste port and also application of automation technology that makes possible the implementation of the same.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Waste products from the forest industry are to be spread in forests in Sweden to counteract nutrient depletion due to whole tree harvesting. This may increase the bioavailability of calcium (Ca) and heavy metals, such as cadmium (Cd), copper (Cu) and zinc (Zn) in forest soils. Heavy metals, like Cd, have already been enriched in forest soils in Sweden, due to deposition of air pollutions, and acidification of forest soils has increased the bioavailability of toxic metals for plant uptake. Changes in the bioavailability of metals may be reflected in altered accumulation of Ca and heavy metals in forest trees, changes in tree growth, including wood formation, and altered tree species composition. This thesis aims at examining: A) if inter- or intra- specific differences in sensitivity to Cd occur in the most common tree species of Sweden, and if so, to study if these can be explained by the uptake and distribution of Cd within the plant: B) how elevated levels of Ca, Cd, Cu and Zn affect the accumulation and attachment of metals in bark and wood, and growth of young Norway spruce (Picea abies): C) how waste products from the forest industry, such as wood ash, influence the contents of Ca, Cd, Cu and Zn in wood and bark of young Norway spruce. Sensitivity to Cd, and its uptake and distribution, in seedlings of Picea abies, Pinus sylvestris and Betula pendula from three regions (southern, central and northern parts) of Sweden, treated with varying concentrations of Cd, were compared. Differences in root sensitivity to Cd both among and within woody species were found and the differences could to some extent be explained by differences in uptake and translocation of Cd. The root sensitivity assays revealed that birch was the least, and spruce the most, sensitive species, both to the external and to tissue levels of Cd. The central ecotype of the species tested tended to be most Cd resistant. The radial distribution, accumulation and attachment of, and interactions between Ca and heavy metals in stems of two-year-old Norway spruce trees treated with elevated levels of Cd, Cu, Zn and/or Ca, were investigated. Further, the influence of these metals on growth, and on root metal content, was examined. Accumulation of the metals was enhanced in wood, bark and/or roots at elevated levels of the metal in question. Even at low levels of the metals, similar to after application of wood ash, an enhanced accumulation was apparent in wood and/or bark, except for Cd. The increased accumulation of Zn and Cu in the stem did not affect the growth. However, Cu decreased the accumulation of Ca in wood. Higher levels of Cu and Cd reduced the stem diameter and the toxic effect was associated with a reduced Ca content in wood. Copper and Cd also decreased the accumulation of Zn in the stem. On the other hand, elevated levels of Ca increased the stem diameter and reduced the accumulation of Cd, Cu, Zn and Mn in wood and/or bark. When metals interacted with each other the firmly bound fraction of the metal reduced was in almost all cases not affected. As an exception, Cd decreased the firmly bound fraction of Zn in the stem. The influence of pellets of wood ash (ash) or a mixture of wood ash and green liquor dregs (ash+GLD), in the amount of 3000 kg ha-1, on the contents of Ca, Cd, Cu and Zn in wood and bark of young Norway spruce in the field was examined. The effect of the treatments on the metal content of bark and wood was larger after 3 years than after 6 years. Treatment with ash+GLD had less effect on the heavy metal content of bark and wood than treatment with ash alone. The ash treatment increased the Cu and Zn content in bark and wood, respectively, after 3 years, and decreased the Ca content of the wood after 6 years. The ash+GLD treatment increased the Ca content of the bark and decreased the Zn content of bark and wood after 3 years. Both treatments reduced, or tended to decrease, the Cd content in wood and bark at both times. To conclude, small changes in the bioavailability of Ca, Cu, Cd and Zn in forest soils, such as after spreading pellets of wood ash or a mixture of wood ash and green liquor dregs from the forest industry, will be reflected in an altered accumulation of metals in wood and bark of Norway spruce. It will not only be reflected in changed accumulation of those metals in which bioavailability in the soil has been enhanced, but also of other metals, probably partly due to interactions between metals. When metals interact the exchangeable bound fraction of the metal reduced is suggested to be the main fraction affected. The small alterations in accumulation of metals should not affect the growth of Norway spruce, especially since the changes in accumulation of metals are low, and further since these decrease over time. However, as an exception, one positive and maybe persistent effect of the waste products is that these may decrease the accumulation of Cd in Norway spruce, which partly may be explained by competition with Ca for uptake, translocation and binding. A decreased accumulation of Cd in Norway spruce will probably affect the trees positively, since Norway spruce is one of the most sensitive species to Cd of the forest trees in Sweden. Thus, spreading of waste products from the forest industry may be a solution to decrease the accumulation of Cd in Norway spruce. In a longer perspective, this will decrease the risk of Cd altering the tree species composition of the forest ecosystem. An elevated bioavailability of Ca in forest soils will, in addition to Cd, probably also decrease the accumulation of other less competitive heavy metals, like Zn and Mn, in the stem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] An assessment of the concentrations of thirteen different therapeutic pharmaceutical compounds was conducted on water samples obtained from different wastewater treatment plants (WWTPs) using solid phase extraction and high- and ultra-high-performance liquid chromatography with mass spectrometry detection (HPLC-MS/MS and UHPLC-MS/MS), was carried out. The target compounds included ketoprofen and naproxen (anti-inflammatories), bezafibrate (lipid-regulating), carbamazepine (anticonvulsant), metamizole (analgesic), atenolol (?-blocker), paraxanthine (stimulant), fluoxetine (antidepressant), and levofloxacin, norfloxacin, ciprofloxacin, enrofloxacin and sarafloxacin (fluoroquinolone antibiotics). The relative standard deviations obtained in method were below 11%, while the detection and quantification limits were in the range of 0.3 ? 97.4 ng·L-1 and 1.1 ? 324.7 ng·L-1, respectively. The water samples were collected from two different WWTPs located on the island of Gran Canaria in Spain over a period of one year. The first WWTP (denoted as WWTP1) used conventional activated sludge for the treatment of wastewater, while the other plant (WWTP2) employed a membrane bioreactor system for wastewater treatment. Most of the pharmaceutical compounds detected in this study during the sampling periods were found to have concentrations ranging between 0.02 and 34.81 ?g·L-1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN]This work presents the calibration and validation of an air quality finite element model applied to the surroundings of Jinamar electric power plant in Gran Canaria island (Spain). The model involves the generation of an adaptive tetrahedral mesh, the computation of an ambient wind field, the inclusion of the plume rise effect in the wind field, and the simulation of transport and reaction of pollutants. The main advantage of the model is the treatment of complex terrains that introduces an alternative to the standard implementation of current models. In addition, it improves the computational cost through the use of unstructured meshes...

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Waste management is becoming, year after year, always more important both for the costs associated with it and for the ever increasing volumes of waste generated. The discussion on the fate of organic fraction of municipal solid waste (OFMSW) leads everyday to new solutions. Many alternatives are proposed, ranging from incineration to composting passing through anaerobic digestion. “For Biogas” is a collaborative effort, between C.I.R.S.A. and R.E.S. cooperative, whose main goal is to generate “green” energy from both biowaste and sludge anaerobic co-digestion. Specifically, the project include a pilot plant receiving dewatered sludge from both urban and agro-industrial sewage (DS) and the organic fraction of MSW (in 2/1 ratio) which is digested in absence of oxygen to produce biogas and digestate. Biogas is piped to a co-generation system producing power and heat reused in the digestion process itself, making it independent from the national grid. Digestate undergoes a process of mechanical separation giving a liquid fraction, introduced in the treatment plant, and a solid fraction disposed in landfill (in future it will be further processed to obtain compost). This work analyzed and estimated the impacts generated by the pilot plant in its operative phase. Once the model was been characterized, on the basis of the CML2001 methodology, a comparison is made with the present scenario assumed for OFMSW and DS. Actual scenario treats separately the two fractions: the organic one is sent to a composting plant, while sludge is sent to landfill. Results show that the most significant difference between the two scenarios is in the GWP category as the project "For Biogas" is able to generate “zero emission” power and heat. It also generates a smaller volume of waste for disposal. In conclusion, the analysis evaluated the performance of two alternative methods of management of OFMSW and DS, highlighting that "For Biogas" project is to be preferred to the actual scenario.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fire blight, caused by the gram negative bacterium Erwinia amylovora, is one of the most destructive bacterial diseases of Pomaceous plants. Therefore, the development of reliable methods to control this disease is desperately needed. This research investigated the possibility to interfere, by altering plant metabolism, on the interactions occurring between Erwinia amylovora, the host plant and the epiphytic microbial community in order to obtain a more effective control of fire blight. Prohexadione-calcium and trinexapac-ethyl, two dioxygenase inhibitors, were chosen as a chemical tool to influence plant metabolism. These compounds inhibit the 2-oxoglutarate-dependent dioxygenases and, therefore, they greatly influence plant metabolism. Moreover, dioxygenase inhibitors were found to enhance plant resistance to a wide range of pathogens. In particular, dioxygenase inhibitors application seems a promising method to control fire blight. From cited literature, it is assumed that these compounds increase plant defence mainly by a transient alteration of flavonoids metabolism. We tried to demonstrate, that the reduction of susceptibility to disease could be partially due to an indirect influence on the microbial community established on plant surface. The possibility to influence the interactions occurring in the epiphytic microbial community is particularly interesting, in fact, the relationships among different bacterial populations on plant surface is a key factor for a more effective biological control of plant diseases. Furthermore, we evaluated the possibility to combine the application of dioxygenase inhibitors with biological control in order to develop an integrate strategy for control of fire blight. The first step for this study was the isolation of a pathogenic strain of E. amylovora. In addition, we isolated different epiphytic bacteria, which respond to general requirements for biological control agents. Successively, the effect of dioxygenase inhibitors treatment on microbial community was investigated on different plant organs (stigmas, nectaries and leaves). An increase in epiphytic microbial population was found. Further experiments were performed with aim to explain this effect. In particular, changes in sugar content of nectar were observed. These changes, decreasing the osmotic potential of nectar, might allow a more consistent growth of epiphytic bacteria on blossoms. On leaves were found similar differences as well. As far as the interactions between E. amylovora and host plant, they were deeply investigated by advanced microscopical analysis. The influence of dioxygenase inhibitors and SAR inducers application on the infection process and migration of pathogen inside different plant tissues was studied. These microscopical techniques, combined with the use of gpf-labelled E. amylovora, allowed the development of a bioassay method for resistance inducers efficacy screening. The final part of the work demonstrated that the reduction of disease susceptibility observed in plants treated with prohexadione-calcium is mainly due to the accumulation of a novel phytoalexins: luteoforol. This 3-deoxyflavonoid was proven to have a strong antimicrobial activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present thesis was to better understand the physiological role of the phytohormones jasmonates (JAs) and abscisic acid (ABA) during fruit ripening in prospect of a possible field application of JAs and ABA to improve fruit yield and quality. In particular, the effects of exogenous application of these substances at different fruit developmental stages and under different experimental conditions were evaluated. Some aspects of the water relations upon ABA treatment were also analysed. Three fruit species, peach (Prunus persica L. Batsch), golden (Actinidia chinensis) and green kiwifruit (Actinidia deliciosa), and several of their cvs, were used for the trials. Different experimental models were adopted: fruits in planta, detached fruit, detached branches with fruit, girdled branches and micropropagated plants. The work was structured into four sets of experiments as follows: (i) Pre-harvest methyl jasmonate (MJ) application was performed at S3/S4 transition under field conditions in Redhaven peach; ethylene production, ripening index, fruit quality and shelf-life were assessed showing that MJ-treated fruit were firmer and thus less ripe than controls as confirmed by the Index of Absorbance Difference (IAD), but exhibited a shorter shelf-life due to an increase in ethylene production. Moreover, the time course of the expression of ethylene-, auxin- and other ripening-related genes was determined. Ripening-related ACO1 and ACS1 transcript accumulation was inhibited though transiently by MJ, and gene expression of the ethylene receptor ETR2 and of the ethylene-related transcription factor ERF2 was also altered. The time course of the expression of several auxin-related genes was strongly affected by MJ suggesting an increase in auxin biosynthesis, altered auxin conjugation and release as well as perception and transport; the need for a correct ethylene/auxin balance during ripening was confirmed. (ii) Pre- and post-harvest ABA applications were carried out under field conditions in Flaminia and O’Henry peach and Stark Red Gold nectarine fruit; ethylene production, ripening index, fruit quality and shelf-life were assessed. Results show that pre-harvest ABA applications increase fruit size and skin color intensity. Also post-harvest ABA treatments alter ripening-related parameters; in particular, while ethylene production is impaired in ABA-treated fruit soluble solids concentration (SSC) is enhanced. Following field ABA applications stem water potential was modified since ABA-treated peach trees retain more water. (iii) Pre- and post-harvest ABA and PDJ treatments were carried out in both kiwifruit species under field conditions at different fruit developmental stages and in post-harvest. Ripening index, fruit quality, plant transpiration, photosynthesis and stomatal conductance were assessed. Pre-harvest treatments enhance SSC in the two cvs and flesh color development in golden kiwifruit. Post-harvest applications of either ABA or ABA plus PDJ lead to increased SSC. In addition, ABA reduces gas exchanges in A. deliciosa. (iv) Spray, drench and dipping ABA treatments were performed in micropropagated peach plants and in peach and nectarine detached branches; plant water use and transpiration, biomass production and fruit dehydration were determined. In both plants and branches ABA significantly reduces water use and fruit dehydration. No negative effects on biomass production were detected. The present information, mainly arising from plant growth regulator application in a field environment, where plants have to cope with multiple biotic and abiotic stresses, may implement the perspectives for the use of these substances in the control of fruit ripening.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last years, sustainable horticulture has been increasing; however, to be successful this practice needs an efficient soil fertility management to maintain a high productivity and fruit quality standards. For this purpose composted organic materials from agri-food industry and municipal solid waste has been used as a source to replace chemical fertilizers and increase soil organic matter. To better understand the influence of compost application on soil fertility and plant growth, we carried out a study comparing organic and mineral nitrogen (N) fertilization in micro propagated plants, potted trees and commercial peach orchard with these aims: 1. evaluation of tree development, CO2 fixation and carbon partition to the different organs of two-years-old potted peach trees. 2. Determination of soil N concentration and nitrate-N effect on plant growth and root oxidative stress of micro propagated plant after increasing rates of N applications. 3. Assessment of soil chemical and biological fertility, tree growth and yield and fruit quality in a commercial orchard. The addition of compost at high rate was effective in increasing CO2 fixation, promoting root growth, shoot and fruit biomass. Furthermore, organic fertilizers influenced C partitioning, favoring C accumulation in roots, wood and fruits. The higher CO2 fixation was the result of a larger tree leaf area, rather than an increase in leaf photosynthetic efficiency, showing a stimulation of plant growth by application of compost. High concentrations of compost increased total soil N concentration, but were not effective in increasing nitrate-N soil concentration; in contrast mineral-N applications increased linearly soil nitrate-N, even at the lowest rate tested. Soil nitrate-N concentration influenced positively plant growth at low rate (60- 80 mg kg-1), whereas at high concentrations showed negative effects. In this trial, the decrease of root growth, as a response to excessive nitrate-N soil concentration, was not anticipated by root oxidative stress. Continuous annual applications of compost for 10 years enhanced soil organic matter content and total soil N concentration. Additionally, high rate of compost application (10 t ha-1 year-1) enhanced microbial biomass. On the other hand, different fertilizers management did not modify tree yield, but influenced fruit size and precocity index. The present data support the idea that organic fertilizers can be used successfully as a substitute of mineral fertilizers in fruit tree nutrient management, since they promote an increase of soil chemical and biological fertility, prevent excessive nitrate-N soil concentration, promote plant growth and potentially C sequestration into the soil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gli impianti di incenerimento di rifiuti solidi suscitano preoccupazione nella popolazione per i possibili effetti avversi associati all’esposizione. Gli effetti delle polveri sottili (PM2.5), generate dai processi di combustione, sulla salute umana includono l’insorgenza di patologie a carico del sistema respiratorio e cardiovascolare e l’aumento della mortalità per malattie polmonari e probabilmente cancro al polmone. Lo scopo della tesi è quello di valutare il profilo tossicologico e cancerogeno del particolato atmosferico in prossimità dell’inceneritore di Bologna rispetto alle aree adiacenti mediante l’utilizzo di test alternativi alle metodologie in vivo, come il test di trasformazione cellulare e approcci di tossicogenomica (soprattutto trascrittomica) oltre alla valutazione della variazione del rischio cancerogeno indotto dall’esposizione di PM2.5 in diversi siti (massima ricaduta, controllo, fondo urbano e fondo rurale) e in differenti periodi di campionamento (estate 2008 e inverno 2009). Gli estratti di PM2.5 relativi alla stagione invernale sono risultati più tossici rispetto ai campioni estivi, che inducono tossicità soprattutto alle alte dosi. Per i campioni invernali il numero medio di colonie di cellule BALB/c 3T3 A31-1-1 risulta ridotto in modo significativo anche per le dosi più basse saggiate indipendentemente dal sito di provenienza. Tutti i campioni analizzati sono risultati negativi nel test di trasformazione cellulare in vitro. L’analisi dell’espressione genica delle cellule BALB/c 3T3 A31-1-1, in seguito all’esposizione agli estratti di PM2.5, ha mostrato un effetto stagionale evidente. Relativamente ai campioni invernali è stato evidenziato un maggior effetto tossico da parte del sito di controllo rispetto alla massima ricaduta, poiché nel sito di controllo risultano attivati marcatori di morte cellulare per apoptosi. La valutazione del rischio cancerogeno in tutti i siti valutati non mostra situazioni preoccupanti legate alla predizione di eccessi di rischio di tumori imputabili all’attività dell’inceneritore in quanto le stime di rischio non eccedono mai il valore limite riportato in letteratura.