974 resultados para Plackett-burman designs
Resumo:
The interfacial micromotion is closely associated to the long-term success of cementless hip prostheses. Various techniques have been proposed to measure them, but only a few number of points over the stem surface can be measured simultaneously. In this paper, we propose a new technique based on micro-Computer Tomography (μCT) to measure locally the relative interfacial micromotions between the metallic stem and the surrounding femoral bone. Tantalum beads were stuck at the stem surface and spread at the endosteal surface. Relative micromotions between the stem and the endosteal bone surfaces were measured at different loading amplitudes. The estimated error was 10μm and the maximal micromotion was 60μm, in the loading direction, at 1400N. This pilot study provided a local measurement of the micromotions in the 3 direction and at 8 locations on the stem surface simultaneously. This technique could be easily extended to higher loads and a much larger number of points, covering the entire stem surface and providing a quasi-continuous distribution of the 3D interfacial micromotions around the stem. The new measurement method would be very useful to compare the induced micromotions of different stem designs and to optimize the primary stability of cementless total hip arthroplasty.
Resumo:
Most leadership and management researchers ignore one key design and estimation problem rendering parameter estimates uninterpretable: Endogeneity. We discuss the problem of endogeneity in depth and explain conditions that engender it using examples grounded in the leadership literature. We show how consistent causal estimates can be derived from the randomized experiment, where endogeneity is eliminated by experimental design. We then review the reasons why estimates may become biased (i.e., inconsistent) in non-experimental designs and present a number of useful remedies for examining causal relations with non-experimental data. We write in intuitive terms using nontechnical language to make this chapter accessible to a large audience.
Resumo:
Federal and state policy makers increasingly emphasize the need to reduce highway crash rates. This emphasis is demonstrated in Iowa’s recently released draft Iowa Strategic Highway Safety Plan and by the U.S. Department of Transportation’s placement of “improved transportation safety” at the top of its list of strategic goals. Thus, finding improved methods to enhance highway safety has become a top priority at highway agencies. The objective of this project is to develop tools and procedures by which Iowa engineers can identify potentially hazardous roadway locations and designs, and to demonstrate the utility of these tools by developing candidate lists of high crash locations in the State. An initial task, building an integrated database to facilitate the tools and procedures, is an important product, in and of itself. Accordingly, the Iowa Department of Transportation (Iowa DOT) Geographic Information Management System (GIMS) and Geographic Information System Accident Analysis and Location System (GIS-ALAS) databases were integrated with available digital imagery. (The GIMS database contains roadway characteristics, e.g., lane width, surface and shoulder type, and traffic volume, for all public roadways. GIS-ALAS records include data, e.g., vehicles, drivers, roadway conditions, and the crash severity, for crashes occurring on public roadways during then past 10 years.)
Resumo:
This paper introduces Collage, a high-level IMS-LD compliant authoring tool that is specialized for CSCL (Computer-Supported Collaborative Learning). Nowadays CSCL is a key trend in elearning since it highlights the importance of social interactions as an essential element of learning. CSCL is an interdisciplinary domain, which demands participatory design techniques that allow teachers to get directly involved in design activities. Developing CSCL designs using LD is a difficult task for teachers since LD is a complex technical specification and modelling collaborative characteristics can be tricky. Collage helps teachers in the process of creating their own potentially effective collaborative Learning Designs by reusing and customizing patterns, according to the requirements of a particular learning situation. These patterns, called Collaborative Learning Flow Patterns (CLFPs), represent best practices that are repetitively used by practitioners when structuring the flow of (collaborative) learning activities. An example of an LD that can be created using Collage is illustrated in the paper. Preliminary evaluation results show that teachers, with experience in CL but without LD knowledge, can successfully design real collaborative learning experiences using Collage.
Resumo:
CSCL applications are complex distributed systems that posespecial requirements towards achieving success in educationalsettings. Flexible and efficient design of collaborative activitiesby educators is a key precondition in order to provide CSCL tailorable systems, capable of adapting to the needs of eachparticular learning environment. Furthermore, some parts ofthose CSCL systems should be reused as often as possible inorder to reduce development costs. In addition, it may be necessary to employ special hardware devices, computational resources that reside in other organizations, or even exceed thepossibilities of one specific organization. Therefore, theproposal of this paper is twofold: collecting collaborativelearning designs (scripting) provided by educators, based onwell-known best practices (collaborative learning flow patterns) in a standard way (IMS-LD) in order to guide the tailoring of CSCL systems by selecting and integrating reusable CSCL software units; and, implementing those units in the form of grid services offered by third party providers. More specifically, this paper outlines a grid-based CSCL system having these features and illustrates its potential scope and applicability by means of a sample collaborative learning scenario.
Resumo:
Collage is a pattern-based visual design authoring tool for the creation of collaborative learning scripts computationally modelled with IMS Learning Design (LD). The pattern-based visual approach aims to provide teachers with design ideas that are based on broadly accepted practices. Besides, it seeks hiding the LD notation so that teachers can easily create their own designs. The use of visual representations supports both the understanding of the design ideas and the usability of the authoring tool. This paper presents a multicase study comprising three different cases that evaluate the approach from different perspectives. The first case includes workshops where teachers use Collage. A second case implies the design of a scenario proposed by a third-party using related approaches. The third case analyzes a situation where students follow a design created with Collage. The cross-case analysis provides a global understanding of the possibilities and limitations of the pattern-based visual design approach.
Resumo:
This paper describes a Computer-Supported Collaborative Learning (CSCL) case study in engineering education carried out within the context of a network management course. The case study shows that the use of two computing tools developed by the authors and based on Free- and Open-Source Software (FOSS) provide significant educational benefits over traditional engineering pedagogical approaches in terms of both concepts and engineering competencies acquisition. First, the Collage authoring tool guides and supports the course teacher in the process of authoring computer-interpretable representations (using the IMS Learning Design standard notation) of effective collaborative pedagogical designs. Besides, the Gridcole system supports the enactment of that design by guiding the students throughout the prescribed sequence of learning activities. The paper introduces the goals and context of the case study, elaborates onhow Collage and Gridcole were employed, describes the applied evaluation methodology, anddiscusses the most significant findings derived from the case study.
Resumo:
Two important challenges that teachers are currently facing are the sharing and the collaborative authoring of their learning design solutions, such as didactical units and learning materials. On the one hand, there are tools that can be used for the creation of design solutions and only some of them facilitate the co-edition. However, they do not incorporate mechanisms that support the sharing of the designs between teachers. On the other hand, there are tools that serve as repositories of educational resources but they do not enable the authoring of the designs. In this paper we present LdShake, a web tool whose novelty is focused on the combined support for the social sharing and co-edition of learning design solutions within communities of teachers. Teachers can create and share learning designs with other teachers using different access rights so that they can read, comment or co-edit the designs. Therefore, each design solution is associated to a group of teachers able to work on its definition, and another group that can only see the design. The tool is generic in that it allows the creation of designs based on any pedagogical approach. However, it can be particularized in instances providing pre-formatted designs structured according to a specific didactic method (such as Problem-Based Learning, PBL). A particularized LdShake instance has been used in the context of Human Biology studies where teams of teachers are required to work together in the design of PBL solutions. A controlled user study, that compares the use of a generic LdShake and a Moodle system, configured to enable the creation and sharing of designs, has been also carried out. The combined results of the real and controlled studies show that the social structure, and the commenting, co-edition and publishing features of LdShake provide a useful, effective and usable approach for facilitating teachers' teamwork.
Resumo:
Designs of CSCL (Computer Supported Collaborative Learning)activities should be flexible, effective and customizable toparticular learning situations. On the other hand, structureddesigns aim to create favourable conditions for learning. Thus,this paper proposes the collection of representative and broadlyaccepted (best practices) structuring techniques in collaborative learning. With the aim of establishing a conceptual common ground among collaborative learning practitioners and softwaredevelopers, and reusing the expertise that best practicesrepresent, the paper also proposes the formulation of these techniques as patterns: the so-called CLFPs (CollaborativeLearning Flow Patterns). To formalize these patterns, we havechosen the educational modelling language IMS Learning Design (IMS-LD). IMS-LD has the capability to specify many of the collaborative characteristics of the CLFPs. Nevertheless, the language bears limited capability for describing the services that mediate interactions within a learning activity and the specification of temporal or rotated roles. This analysis isdiscussed in the paper, as well as our approaches towards thedevelopment of a system capable of integrating tools using IMSLDscripts and a CLFP-based Learning Design authoring tool.
Resumo:
This workshop paper states that fostering active student participation both in face-to-face lectures / seminars and outside the classroom (personal and group study at home, the library, etc.) requires a certain level of teacher-led inquiry. The paper presents a set of strategies drawn from real practice in higher education with teacher-led inquiry ingredients that promote active learning. Thesepractices highlight the role of the syllabus, the importance of iterative learning designs, explicit teacher-led inquiry, and the implications of the context, sustainability and practitioners’ creativity. The strategies discussed in this paper can serve as input to the workshop as real cases that need to be represented in design and supported in enactment (with and without technologies).
Resumo:
The chemistry of today’s concrete mixture designs is complicated by many variables, including multiple sources of aggregate and cements and a plethora of sometimes incompatible mineral and chemical admixtures. Concrete paving has undergone significant changes in recent years as new materials have been introduced into concrete mixtures. Supplementary cementitious materials such as fly ash and ground granulated blast furnace slag are now regularly used. In addition, many new admixtures that were not even available a few years ago now have widespread usage. Adding to the complexity are construction variables such as weather, mix delivery times, finishing practices, and pavement opening schedules. Mixture materials, mix design, and pavement construction are not isolated steps in the concrete paving process. Each affects and is affected by the other in ways that determine overall pavement quality and long-term performance. Equipment and procedures commonly used to test concrete materials and concrete pavements have not changed in decades, leaving serious gaps in our ability to understand and control the factors that determine concrete durability. The concrete paving community needs tests that will adequately characterize the materials, predict interactions, and monitor the properties of the concrete.
Resumo:
Collaborative activities, in which students actively interact with each other, have proved to provide significant learning benefits. In Computer-Supported Collaborative Learning (CSCL), these collaborative activities are assisted by technologies. However, the use of computers does not guarantee collaboration, as free collaboration does not necessary lead to fruitful learning. Therefore, practitioners need to design CSCL scripts that structure the collaborative settings so that they promote learning. However, not all teachers have the technical and pedagogical background needed to design such scripts. With the aim of assisting teachers in designing effective CSCL scripts, we propose a model to support the selection of reusable good practices (formulated as patterns) so that they can be used as a starting point for their own designs. This model is based on a pattern ontology that computationally represents the knowledge captured on a pattern language for the design of CSCL scripts. A preliminary evaluation of the proposed approach is provided with two examples based on a set of meaningful interrelated patters computationally represented with the pattern ontology, and a paper prototyping experience carried out with two teaches. The results offer interesting insights towards the implementation of the pattern ontology in software tools.
Resumo:
OBJECTIVES: During open heart surgery, so-called atrial chatter, a phenomenon due to right atria and/or caval collapse, is frequently observed. Collapse of the cava axis during cardiopulmonary bypass (CPB) limits venous drainage and may result downstream in reduced pump flow on (lack of volume) and upstream in increased after-load (stagnation), which in turn may both result in reduced or even inadequate end-organ perfusion. The goal of this study was to reproduce venous collapse in the flow bench. METHODS: In accordance with literature for venous anatomy, a caval tree system is designed (polyethylene, thickness 0.061 mm), which receives venous inflow from nine afferent veins. With water as medium and a preload of 4.4 mmHg, the system has an outflow of 4500 ml/min (Scenario A). After the insertion of a percutaneous venous cannula (23-Fr), the venous model is continuously served by the afferent branches in a venous test bench and venous drainage is augmented with a centrifugal pump (Scenario B). RESULTS: With gravity drainage (siphon: A), spontaneously reversible atrial chatter can be generated in reproducible fashion. Slight reduction in the outflow diameter allows for generation of continuous flow. With augmentation (B), irreversible collapse of the artificial vena cava occurs in reproducible fashion at a given pump speed of 2300 ± 50 RPM and a pump inlet pressure of -112 mmHg. Furthermore, bubbles form at the cannula tip despite the fact that the entire system is immersed in water and air from the environment cannot enter the system. This phenomenon is also known as cavitation and should be avoided because of local damage of both formed blood elements and endothelium, as well embolization. CONCLUSIONS: This caval model provides a realistic picture for the limitations of flow due to spontaneously reversible atrial chatter vs irreversible venous collapse for a given negative pressure during CPB. Temporary interruption of negative pressure in the venous line can allow for recovery of venous drainage. This know-how can be used not only for testing different cannula designs, but also for further optimizing perfusion strategies.
Resumo:
State Highway Departments and local street and road agencies are currently faced with aging highway systems and a need to extend the life of some of the pavements. The agency engineer should have the opportunity to explore the use of multiple surface types in the selection of a preferred rehabilitation strategy. This study was designed to look at the portland cement concrete overlay alternative and especially the design of overlays for existing composite (portland cement and asphaltic cement concrete) pavements. Existing design procedures for portland cement concrete overlays deal primarily with an existing asphaltic concrete pavement with an underlying granular base or stabilized base. This study reviewed those design methods and moved to the development of a design for overlays of composite pavements. It deals directly with existing portland cement concrete pavements that have been overlaid with successive asphaltic concrete overlays and are in need of another overlay due to poor performance of the existing surface. The results of this study provide the engineer with a way to use existing deflection technology coupled with materials testing and a combination of existing overlay design methods to determine the design thickness of the portland cement concrete overlay. The design methodology provides guidance for the engineer, from the evaluation of the existing pavement condition through the construction of the overlay. It also provides a structural analysis of various joint and widening patterns on the performance of such designs. This work provides the engineer with a portland cement concrete overlay solution to composite pavements or conventional asphaltic concrete pavements that are in need of surface rehabilitation.
Resumo:
Various test methods exist for measuring heat of cement hydration; however, most current methods require expensive equipment, complex testing procedures, and/or extensive time, thus not being suitable for field application. The objectives of this research are to identify, develop, and evaluate a standard test procedure for characterization and quality control of pavement concrete mixtures using a calorimetry technique. This research project has three phases. Phase I was designed to identify the user needs, including performance requirements and precision and bias limits, and to synthesize existing test methods for monitoring the heat of hydration, including device types, configurations, test procedures, measurements, advantages, disadvantages, applications, and accuracy. Phase II was designed to conduct experimental work to evaluate the calorimetry equipment recommended from the Phase I study and to develop a standard test procedure for using the equipment and interpreting the test results. Phase II also includes the development of models and computer programs for prediction of concrete pavement performance based on the characteristics of heat evolution curves. Phase III was designed to study for further development of a much simpler, inexpensive calorimeter for field concrete. In this report, the results from the Phase I study are presented, the plan for the Phase II study is described, and the recommendations for Phase III study are outlined. Phase I has been completed through three major activities: (1) collecting input and advice from the members of the project Technical Working Group (TWG), (2) conducting a literature survey, and (3) performing trials at the CP Tech Center’s research lab. The research results indicate that in addition to predicting maturity/strength, concrete heat evolution test results can also be used for (1) forecasting concrete setting time, (2) specifying curing period, (3) estimating risk of thermal cracking, (4) assessing pavement sawing/finishing time, (5) characterizing cement features, (6) identifying incompatibility of cementitious materials, (7) verifying concrete mix proportions, and (8) selecting materials and/or mix designs for given environmental conditions. Besides concrete materials and mix proportions, the configuration of the calorimeter device, sample size, mixing procedure, and testing environment (temperature) also have significant influences on features of concrete heat evolution process. The research team has found that although various calorimeter tests have been conducted for assorted purposes and the potential uses of calorimeter tests are clear, there is no consensus on how to utilize the heat evolution curves to characterize concrete materials and how to effectively relate the characteristics of heat evolution curves to concrete pavement performance. The goal of the Phase II study is to close these gaps.