954 resultados para Physiology of plants
Resumo:
Males of plants with separate sexes are often more prone to attack by herbivores than females. A common explanation for this pattern is that individuals with a greater male function suffer more from herbivory because they grow more quickly, drawing more heavily on resources for growth that might otherwise be allocated to defence. Here, we test this 'faster-sex' hypothesis in a species in which males in fact grow more slowly than hermaphrodites, the wind-pollinated annual herb Mercurialis annua. We expected greater herbivory in the faster-growing hermaphrodites. In contrast, we found that males, the slower sex, were significantly more heavily eaten by snails than hermaphrodites. Our results thus reject the faster-sex hypothesis and point to the importance of a trade-off between defence and reproduction rather than growth.
Resumo:
The objective of this work was to characterize 119 accessions of guava and 40 accessions of "araçá" sampled in 35 Brazilian ecoregions, according to the International Union for the Protection of New Varieties of Plants (UPOV) descriptors. The majority of "araçá" accessions presented wide spacing of leaf veins, while guava accessions presented medium to close spacing. Most fruits of "araçá" accessions were classified as small, contrasting with medium to large fruits of guava accessions. Most of "araçá" accessions (91%) presented white flesh fruit color, while 58% of guava accessions presented pale pink, pink and dark pink colors. Fruit differences among wild and cultivated Psidium species indicate fruit as the most altered trait under artificial selection.
Resumo:
The objective of this work was to analyze the agronomic performance and chromosomal stability of transgenic homozygous progenies of soybean [Glycine max (L.) Merrill.], and to confirm the resistance of these plants against Anticarsia gemmatalis. Eleven progenies expressing cry1Ac, hpt and gusA genes were evaluated for agronomic characteristics in relation to the nontransformed parent IAS 5 cultivar. Cytogenetical analysis was carried out on transgenic and nontransgenic plants. Two out of the 11 transgenic progenies were also evaluated, in vitro and in vivo, for resistance to A. gemmatalis. Two negative controls were used in resistance bioassays: a transgenic homozygous line, containing only the gusA reporter gene, and nontransgenic 'IAS 5' plants. The presence of cry1Ac transgene affected neither the development nor the yield of plants. Cytogenetical analysis showed that transgenic plants presented normal karyotype. In detached-leaf bioassay, cry1Ac plants exhibited complete efficacy against A. gemmatalis, whereas negative controls were significantly damaged. Whole-plant feeding assay confirmed a very high protection of cry1Ac against velvetbean caterpillar, while nontransgenic 'IAS 5' plants and homozygous gusA line exhibited 56.5 and 71.5% defoliation, respectively. The presence of cry1Ac transgene doesn't affect the majority of agronomic traits (including yield) of soybean and grants high protection against A. gemmatalis.
Resumo:
Background and aims: The phosphoinositide phosphatase PTEN is a potent tumor suppressor and a regulator of insulin sensitivity in peripheral tissues. In adipocytes, experimental alterations of PTEN expression modulate the sensitivity of these cells to insulin. However, virtually nothing is known about the pathophysiological regulation of endogenous PTEN in adipose tissue. Herein, we investigated in vivo and in vitro whether alterations of PTEN expression in adipocytes are associated with the metabolic syndrome and what are the functional outcomes of dysregulated PTEN expression/activity. Materials and methods: PTEN expression was examined in vivo in adipose tissue of rats and human with the metabolic syndrome. Metabolic factors mediating dysregulation of PTEN expression in adipocytes and the subsequent effects on the physiology of these cells were investigated in vitro using human CHUB-S7 preadipocytes. Results: We demonstrated that PTEN is downregulated, both at the mRNA and protein levels, in adipose tissue of diabetic/obese ZDF rats and in subcutaneous adipose tissue of obese human patients. PTEN downregulation correlated with degradation of IκBα and hyperactivation of NF-κB, a transcription factor previously described to modulate PTEN expression. The expression of SHIP2, another PtdIns(3,4,5)P3 phosphatase involved in the control of insulin sensitivity and the development of obesity, was not altered. In vitro analyses using differentiated human CHUB-S7 preadipocytes showed that PTEN downregulation is not triggered by high concentrations of glucose or fatty acids. In contrast, the pro-inflammatory cytokines IL-1α and TNFα, significantly downregulate PTEN expression. Consistent with the IL1α-dependent PTEN downregulation, long-term incubation of CHUB-S7 cells with IL-1α potentiates insulin-induced Akt and ERK1/2 signaling. We finally showed that PTEN downregulation in CHUB-S7 preadipocytes by PTEN siRNAs induced an increased secretion of the pro-inflammatory cytokines IL-1β, IL-6 and TNFα. Conclusion: Taken together, these data indicate that PTEN expression is downregulated in adipose tissue of obese/diabetic subjects, potentially via cytokine- mediated activation of the NF-κB pathway. PTEN downregulation in adipocytes might in turn worsen adipose tissue inflammation through a vicious circle by further stimulating the secretion of pro-inflammatory cytokines.
Resumo:
This work aimed to investigate the ratio of colonization by terrestrial mites on ice-free areas created by the ongoing climate-induced melting of Antarctic glaciers. Glacier retreat opens new ice-free areas for the colonization by vegetation and animals. The study was undertaken on the Antarctic Specially Protected Area no. 128 (West Coast of the Admiralty Bay, King George Island, South Shetlands Islands). Transects marked between the Ecology, Baranowski and Windy Glaciers, and a sea shore were used to collect soil samples. Oribatid mites were found only on near-shore areas, on patches of vegetation of more than 30 years of age. The colonization by mite communities is strongly determined by the presence of plants.
Resumo:
The objective of this work was to validate, by quantitative PCR in real time (RT-qPCR), genes to be used as reference in studies of gene expression in soybean in drought-stressed trials. Four genes commonly used in soybean were evaluated: Gmβ-actin, GmGAPDH, GmLectin and GmRNAr18S. Total RNA was extracted from six samples: three from roots in a hydroponic system with different drought intensities (0, 25, 50, 75 and 100 minutes of water stress), and three from leaves of plants grown in sand with different soil moistures (15, 5 and 2.5% gravimetric humidity). The raw cycle threshold (Ct) data were analyzed, and the efficiency of each primer was calculated for an overall analysis of the Ct range among the different samples. The GeNorm application was used to evaluate the best reference gene, according to its stability. The GmGAPDH was the least stable gene, with the highest mean values of expression stability (M), and the most stable genes, with the lowest M values, were the Gmβ-actin and GmRNAr18S, when both root and leaves samples were tested. These genes can be used in RT-qPCR as reference gene for expression analysis.
Resumo:
The objective of this work was to evaluate the effect of feed deprivation and refeeding with diets containing different energy to protein ratios (E/P) on the performance and physiology of juvenile tambaqui (Colossoma macropomum). A 4x2 factorial arrangement with three replicates was used, with four E/P ratios (11.5, 10.5, 9.5, and 8.5 kcal g-1 digestible energy per protein) and two feeding regimens (with and without deprivation), during 60 days. Fish from the food-deprived group were fasted for 14 days and refed from the fifteenth to the sixtieth day, whereas the remaining fish were fed for 60 days. At the end of the experimental period, weight of fish subjected to food deprivation was lower than that of those continuously fed; however, this condition did not influence the physiological parameters analyzed. Tambaqui fed 11.5 kcal g-1 achieved lower final weight than those fed with the other diets, in both regimens. Among the physiological parameters, only plasma protein presented significant increase in fish fed 8.5 kcal g-1, in both feeding regimens, probably due to the higher dietary protein concentration. These results indicate that fish show a partial compensatory growth, and that 10.5 kcal g-1 can be recommended for the diet of juvenile tambaqui.
Resumo:
Les plantes sont essentielles pour les sociétés humaines. Notre alimentation quotidienne, les matériaux de constructions et les sources énergétiques dérivent de la biomasse végétale. En revanche, la compréhension des multiples aspects développementaux des plantes est encore peu exploitée et représente un sujet de recherche majeur pour la science. L'émergence des technologies à haut débit pour le séquençage de génome à grande échelle ou l'imagerie de haute résolution permet à présent de produire des quantités énormes d'information. L'analyse informatique est une façon d'intégrer ces données et de réduire la complexité apparente vers une échelle d'abstraction appropriée, dont la finalité est de fournir des perspectives de recherches ciblées. Ceci représente la raison première de cette thèse. En d'autres termes, nous appliquons des méthodes descriptives et prédictives combinées à des simulations numériques afin d'apporter des solutions originales à des problèmes relatifs à la morphogénèse à l'échelle de la cellule et de l'organe. Nous nous sommes fixés parmi les objectifs principaux de cette thèse d'élucider de quelle manière l'interaction croisée des phytohormones auxine et brassinosteroïdes (BRs) détermine la croissance de la cellule dans la racine du méristème apical d'Arabidopsis thaliana, l'organisme modèle de référence pour les études moléculaires en plantes. Pour reconstruire le réseau de signalement cellulaire, nous avons extrait de la littérature les informations pertinentes concernant les relations entre les protéines impliquées dans la transduction des signaux hormonaux. Le réseau a ensuite été modélisé en utilisant un formalisme logique et qualitatif pour pallier l'absence de données quantitatives. Tout d'abord, Les résultats ont permis de confirmer que l'auxine et les BRs agissent en synergie pour contrôler la croissance de la cellule, puis, d'expliquer des observations phénotypiques paradoxales et au final, de mettre à jour une interaction clef entre deux protéines dans la maintenance du méristème de la racine. Une étude ultérieure chez la plante modèle Brachypodium dystachion (Brachypo- dium) a révélé l'ajustement du réseau d'interaction croisée entre auxine et éthylène par rapport à Arabidopsis. Chez ce dernier, interférer avec la biosynthèse de l'auxine mène à la formation d'une racine courte. Néanmoins, nous avons isolé chez Brachypodium un mutant hypomorphique dans la biosynthèse de l'auxine qui affiche une racine plus longue. Nous avons alors conduit une analyse morphométrique qui a confirmé que des cellules plus anisotropique (plus fines et longues) sont à l'origine de ce phénotype racinaire. Des analyses plus approfondies ont démontré que la différence phénotypique entre Brachypodium et Arabidopsis s'explique par une inversion de la fonction régulatrice dans la relation entre le réseau de signalisation par l'éthylène et la biosynthèse de l'auxine. L'analyse morphométrique utilisée dans l'étude précédente exploite le pipeline de traitement d'image de notre méthode d'histologie quantitative. Pendant la croissance secondaire, la symétrie bilatérale de l'hypocotyle est remplacée par une symétrie radiale et une organisation concentrique des tissus constitutifs. Ces tissus sont initialement composés d'une douzaine de cellules mais peuvent aisément atteindre des dizaines de milliers dans les derniers stades du développement. Cette échelle dépasse largement le seuil d'investigation par les moyens dits 'traditionnels' comme l'imagerie directe de tissus en profondeur. L'étude de ce système pendant cette phase de développement ne peut se faire qu'en réalisant des coupes fines de l'organe, ce qui empêche une compréhension des phénomènes cellulaires dynamiques sous-jacents. Nous y avons remédié en proposant une stratégie originale nommée, histologie quantitative. De fait, nous avons extrait l'information contenue dans des images de très haute résolution de sections transverses d'hypocotyles en utilisant un pipeline d'analyse et de segmentation d'image à grande échelle. Nous l'avons ensuite combiné avec un algorithme de reconnaissance automatique des cellules. Cet outil nous a permis de réaliser une description quantitative de la progression de la croissance secondaire révélant des schémas développementales non-apparents avec une inspection visuelle classique. La formation de pôle de phloèmes en structure répétée et espacée entre eux d'une longueur constante illustre les bénéfices de notre approche. Par ailleurs, l'exploitation approfondie de ces résultats a montré un changement de croissance anisotropique des cellules du cambium et du phloème qui semble en phase avec l'expansion du xylème. Combinant des outils génétiques et de la modélisation biomécanique, nous avons démontré que seule la croissance plus rapide des tissus internes peut produire une réorientation de l'axe de croissance anisotropique des tissus périphériques. Cette prédiction a été confirmée par le calcul du ratio des taux de croissance du xylème et du phloème au cours de développement secondaire ; des ratios élevés sont effectivement observés et concomitant à l'établissement progressif et tangentiel du cambium. Ces résultats suggèrent un mécanisme d'auto-organisation établi par un gradient de division méristématique qui génèrent une distribution de contraintes mécaniques. Ceci réoriente la croissance anisotropique des tissus périphériques pour supporter la croissance secondaire. - Plants are essential for human society, because our daily food, construction materials and sustainable energy are derived from plant biomass. Yet, despite this importance, the multiple developmental aspects of plants are still poorly understood and represent a major challenge for science. With the emergence of high throughput devices for genome sequencing and high-resolution imaging, data has never been so easy to collect, generating huge amounts of information. Computational analysis is one way to integrate those data and to decrease the apparent complexity towards an appropriate scale of abstraction with the aim to eventually provide new answers and direct further research perspectives. This is the motivation behind this thesis work, i.e. the application of descriptive and predictive analytics combined with computational modeling to answer problems that revolve around morphogenesis at the subcellular and organ scale. One of the goals of this thesis is to elucidate how the auxin-brassinosteroid phytohormone interaction determines the cell growth in the root apical meristem of Arabidopsis thaliana (Arabidopsis), the plant model of reference for molecular studies. The pertinent information about signaling protein relationships was obtained through the literature to reconstruct the entire hormonal crosstalk. Due to a lack of quantitative information, we employed a qualitative modeling formalism. This work permitted to confirm the synergistic effect of the hormonal crosstalk on cell elongation, to explain some of our paradoxical mutant phenotypes and to predict a novel interaction between the BREVIS RADIX (BRX) protein and the transcription factor MONOPTEROS (MP),which turned out to be critical for the maintenance of the root meristem. On the same subcellular scale, another study in the monocot model Brachypodium dystachion (Brachypodium) revealed an alternative wiring of auxin-ethylene crosstalk as compared to Arabidopsis. In the latter, increasing interference with auxin biosynthesis results in progressively shorter roots. By contrast, a hypomorphic Brachypodium mutant isolated in this study in an enzyme of the auxin biosynthesis pathway displayed a dramatically longer seminal root. Our morphometric analysis confirmed that more anisotropic cells (thinner and longer) are principally responsible for the mutant root phenotype. Further characterization pointed towards an inverted regulatory logic in the relation between ethylene signaling and auxin biosynthesis in Brachypodium as compared to Arabidopsis, which explains the phenotypic discrepancy. Finally, the morphometric analysis of hypocotyl secondary growth that we applied in this study was performed with the image-processing pipeline of our quantitative histology method. During its secondary growth, the hypocotyl reorganizes its primary bilateral symmetry to a radial symmetry of highly specialized tissues comprising several thousand cells, starting with a few dozens. However, such a scale only permits observations in thin cross-sections, severely hampering a comprehensive analysis of the morphodynamics involved. Our quantitative histology strategy overcomes this limitation. We acquired hypocotyl cross-sections from tiled high-resolution images and extracted their information content using custom high-throughput image processing and segmentation. Coupled with an automated cell type recognition algorithm, it allows precise quantitative characterization of vascular development and reveals developmental patterns that were not evident from visual inspection, for example the steady interspace distance of the phloem poles. Further analyses indicated a change in growth anisotropy of cambial and phloem cells, which appeared in phase with the expansion of xylem. Combining genetic tools and computational modeling, we showed that the reorientation of growth anisotropy axis of peripheral tissue layers only occurs when the growth rate of central tissue is higher than the peripheral one. This was confirmed by the calculation of the ratio of the growth rate xylem to phloem throughout secondary growth. High ratios are indeed observed and concomitant with the homogenization of cambium anisotropy. These results suggest a self-organization mechanism, promoted by a gradient of division in the cambium that generates a pattern of mechanical constraints. This, in turn, reorients the growth anisotropy of peripheral tissues to sustain the secondary growth.
Resumo:
In shade-intolerant plants such as Arabidopsis, a reduction in the red/far-red (R/FR) ratio, indicative of competition from other plants, triggers a suite of responses known as the shade avoidance syndrome (SAS). The phytochrome photoreceptors measure the R/FR ratio and control the SAS. The phytochrome-interacting factors 4 and 5 (PIF4 and PIF5) are stabilized in the shade and are required for a full SAS, whereas the related bHLH factor HFR1 (long hypocotyl in FR light) is transcriptionally induced by shade and inhibits this response. Here we show that HFR1 interacts with PIF4 and PIF5 and limits their capacity to induce the expression of shade marker genes and to promote elongation growth. HFR1 directly inhibits these PIFs by forming non-DNA-binding heterodimers with PIF4 and PIF5. Our data indicate that PIF4 and PIF5 promote SAS by directly binding to G-boxes present in the promoter of shade marker genes, but their action is limited later in the shade when HFR1 accumulates and forms non-DNA-binding heterodimers. This negative feedback loop is important to limit the response of plants to shade.
Resumo:
Plants activate direct and indirect defenses in response to insect egg deposition. In Arabidopsis thaliana, oviposition by the butterfly Pieris brassicae triggers cellular and molecular changes that are similar to the changes caused by biotrophic pathogens. Even though this innate immune response did not affect egg survival in Arabidopsis, we could show that different insect eggs elicit specific gene expression changes. Additionally, egg- induced necrosis could be observed in a variety of plants from different families ranging from dicotyledonous plants to monocots, suggesting that insect-egg detection by plants is a widespread mechanism and that different insect species contain elicitors of immune responses. Extracts from caterpillars and eggs contain elicitors that co-purified over several extraction steps. Chemical fractionation of caterpillar extracts lead to the characterisation of an active compound that was determined to be a triglyceride by NMR analysis. The exact structure of the side chains as well as the elicitor's presence in insect eggs have yet to be confirmed.We also found that the plant defense signal salicylic acid (SA) accumulates at the site of oviposition. This is unexpected, as the SA pathway controls the defense against fungal and bacterial pathogens whereas it negatively interacts with the jasmonic acid (JA) pathway, which is crucial for the defense against herbivores. Application of P. brassicae or Spodoptera littoralis egg extract onto leaves reduced the induction of insect-responsive genes after challenge with caterpillars, suggesting that egg-derived elicitors suppress plant defense. Consequently, larval growth of the generalist herbivore S. littoralis, but not of the specialist P. brassicae, was significantly higher on plants treated with egg extract than on control plants. In contrast, suppression of gene induction and enhanced S. littoralis performance were not found in the SA-deficient mutant sid2-l, indicating that SA mediates this phenomenon. These data reveal an intriguing facet of the crosstalk between SA- and JA-signalling pathways and suggest that insects have evolved a way to suppress the induction of defense genes by laying eggs that release elicitors. Additionally, we demonstrated that mutants of known crosstalk regulators, including nprl-1, tga2356, ein2-l and wrky70-l, are not affected in egg-induced suppression of herbivore defenses. JA treatment was not able to alleviate this SA/JA negative crosstalk, suggesting that this suppression operates through a novel mechanism downstream of JA biosynthesis.
Resumo:
In addition to its role as a barrier, the cuticle is also a source of signals perceived by invading fungi. Cuticular breakdown products have been shown previously to be potent inducers of cutinase or developmental processes in fungal pathogens. Here the question was addressed as to whether plants themselves can perceive modifications of the cuticle. This was studied using Arabidopsis thaliana plants with altered cuticular structure. The expression of a cell wall-targeted fungal cutinase in A. thaliana was found to provide total immunity to Botrytis cinerea. The response observed in such cutinase-expressing plants is independent of signal transduction pathways involving salicylic acid, ethylene or jasmonic acid. It is accompanied by the release of a fungitoxic activity and increased expression of members of the lipid transfer protein, peroxidase and protein inhibitor gene families that provide resistance when overexpressed in wild-type plants. The same experiments were made in the bodyguard (bdg) mutant of A. thaliana. This mutant exhibits cuticular defects and remained free of symptoms after inoculation with B. cinerea. The expression of resistance was accompanied by the release of a fungitoxic activity and increased expression of the same genes as observed in cutinase-expressing plants. Structural defects of the cuticle can thus be converted into an effective multi-factorial defence, and reveal a hitherto hidden aspect of the innate immune response of plants.
Resumo:
In ants, there are two main processes of colony founding, the independent and the dependent modes. In the first case young queens start colony founding without the help of workers, whereas in the second case they are accompanied by workers. To determine the relation between the mode of colony founding and the physiology of queens, we collected mature gynes of 24 ant species. Mature gynes of species utilizing independent colony founding had a far higher relative fat content than gynes of species employing dependent colony founding. These fat reserves are stored during the period of maturation, i.e. between the time of emergence and mating, and serve as fuel during the time of colony founding to nurture the queen and the brood. Gynes of species founding independently but non claustrally were found to have a relative fat content intermediate between the values found for gynes founding independently and those founding dependently. This suggests that such gynes rely partially on their fat reserves and partially on the energy provided by prey they collect to nurture themselves and the first brood during the time of colony founding. Study of the fat content of mature gynes of all species has shown that it gives a good indication of the mode of colony founding.
Resumo:
Abstract:The objective of this work was to characterize the performance of elite wheat genotypes from different Brazilian breeding programs for traits associated with grain yield and preharvest sprouting. The study was conducted in 2010 and 2011 in the municipality of Capão do Leão, in the state of Rio Grande do Sul, Brazil, in a randomized complete block design with three replicates. Thirty-three wheat genotypes were evaluated for traits related to preharvest sprouting and grain yield. The estimate of genetic distance was used to predict potential combinations for selection of plants with high grain yield and tolerance to preharvest sprouting. The combined analysis of sprouted grains and falling number shows that the TBIO Alvorada, TBIO Mestre, Frontana, Fundacep Raízes, Fundacep Cristalino, and BRS Guamirim genotypes are tolerant to preharvest sprouting. Combinations of TBIO Alvorada and TBIO Mestre with Fundacep Cristalino show high potential for recovering superior genotypes for high grain yield and tolerance to preharvest sprouting.
Resumo:
Résume Les caspases sont un groupe de protéases à cystéine qui s?activent lors de l'apoptose. Leur activation induit le clivage de nombreuses cibles intracellulaires, conduisant à l'activation de voies pro-apoptotiques et finalement au démantèlement des cellules. Cependant, des caspases ont été décrites dans de nombreux autres processus indépendants de l'apoptose, notamment dans la physiologie des cellules hématopoïétiques, des cellules musculaires, des cellules de la peau et des neurones. Comment est-ce que les cellules réconcilient-elles ces deux fonctions distinctes? Une partie de la réponse réside dans la nature des substrats qu'elles clivent. Certains substrats, une fois clivées, deviennent anti-apoptotiques. RasGAP est une cible des caspases et contient deux sites spécifiques de clivage par les caspases. Lorsque le niveau d?activité des caspases est faible le clivage de RasGAP produit un fragment N-terminal qui active un signal antiapoptotique, relayé par la voie de Ras/PI3K/Akt. Lorsque le niveau d?activité des caspases est plus élevé le fragment RasGAP N-terminal est à nouveau clivé, perdant de ce fait ses propriétés anti-apoptotiques. Dans cette étude, nous avons mis en évidence que l'activation de la voie Ras/PI3K/Akt induite par le fragment RasGAP N-terminal dépend de RasGAP lui-même. Par ailleurs, dans le but d?étudier l?importance du clivage de RasGAP dans un contexte physiologique, nous avons développé un modèle animal exprimant une gêne mutée de RasGAP de sorte que la protéine est devenu insensible a l?action de caspases. Les données préliminaires obtenues montrent que le clivage de RasGAP n'est pas indispensable pour le développement et l?homéostasie chez la souris. Finalement, nous avons développé une souris transgénique surexprimant le fragment de RasGAP N-terminal dans les cellules ß du pancréas. Les animaux obtenus ne montrent pas de symptômes dans les conditions basales bien qu?ils soient plus résistants au diabète induit expérimentalement. Ces résultats montrent que la surexpression du fragment N-terminal de RasGAP protége efficacement les cellules ß du pancréas de l?apoptose induite par le stress sans pourtant affecter d?autres paramètres physiologiques des Ilot de Langerhans.<br/><br/>Caspases are a series of proteases that are activated during apoptosis. Their activation causes the cleavage of numerous intracellular targets, which leads to cell dismantling and activation of pro-apoptotic pathways. Caspases have been found to be involved in the physiology of numerous cell types including haematopoietic cells, muscle cells, skin cells and neurons. How cells conciliate these two opposite functions? Part of the answer lies in the nature of the substrates they cleave. Some substrates become anti-apoptotic once cleaved by caspases. RasGAP is a caspase substrate that possesses two conserved caspase-cleavage sites. At low caspase activity, RasGAP is first cleaved and the generated N-terminal fragment activates a potent anti-apoptotic signal, mediated by the Ras/PI3K/Akt pathway. At higher caspase activity, the N-terminal fragment is further cleaved thereby losing its anti-apoptotic properties. In the present study we show that the activation of the Ras/PI3K/Akt pathway mediated by RasGAP N-terminal fragment is dependent on RasGAP itself. Moreover, to study the role of RasGAP cleavage in a physiological model, we have developed a knock-in mouse model expressing a RasGAP mutant that is not cleavable by caspases. Preliminary data shows that RasGAP cleavage is not required for normal development and homeostasis in mice. Finally, we have developed a transgenic mouse model overexpressing RasGAP N-terminal fragment in the ß-cell of the pancreas. In basal conditions, these mice show no difference with their wt counterparts. However, they are protected against experimentally induced diabetes. These results indicate that fragment N can protect ? cells from stress-induced apoptosis without affecting other physiological parameters of the Islets.
Resumo:
This article explores possible histories of plant exchanges and plant naming tied to the slave trade between East Africa, Madagascar and the Mascarene Islands. The subsequent 'marronnage' of slaves on these islands - their escape from captivity, sometimes to live in mountain hideouts - continues to inspire cultural references. Inspired by the use of the adjective 'marron/marronne' for a number of plants on Reunion Island, we compile evidence of plant exchanges and plant naming from ecological records, historical accounts and the use of descriptive, emotive or symbolic vernacular names as clues for deepening our knowledge of historical societies and environments. The evidence from the Mascarenes opens a window into the role of the African diaspora in plant introduction, diffusion, domestication and cultivation. We document that maroons relied on a variety of wild, escaped and cultivated plants for their subsistence. We also highlight the role of marronnage in the popular and literary imaginary, with the result that many plants are named 'marron/marrone' in a metaphorical sense. Finally, we identify a few plants that may have been transported, cultivated, or encouraged in one way or another by maroons. Along the way, we reflect on the pitfalls and opportunities of such interdisciplinary work.