912 resultados para Phase change material (PCM)
Resumo:
A detailed investigation of the phase diagram of 1-butyl-3-methyl imidazolium hexafluorophosphate ([bmim][PF6]) is presented on the basis of a wide set of experimental data accessing thermodynamic, structural, and dynamical properties of this important room temperature ionic liquid (RTIL). The combination of quasi adiabatic, continuous calorimetry, wide angle neutron and X-ray diffraction, and quasi elastic neutron scattering allows the exploration of many novel features of this material. Thermodynamic and microscopic structural information is derived on both glassy and crystalline states and compared with results that recently appeared in the literature allowing direct information to be obtained on the existence of two crystalline phases that were not previously characterized and confirming the view that RTILs show a substantial degree of order (even in their amorphous states), which resembles the crystalline order. We highlight a strong connection between structure and dynamics, showing the existence of three temperature ranges in the glassy state across which both the spatial correlation and the dynamics change. The complex crystalline polymorphism in [bmim][PF6] also is investigated; we compare our findings with the corresponding findings for similar RTILs. These results provide a strong experimental basis for the exploration of the features of the phase diagram of RTILs and for the further study of longer alkyl chain salts.
Resumo:
The vegetation history of the Faroe Islands has been investigated in numerous studies all broadly showing that the early-Holocene vegetation of the islands largely consisted of fellfield with gravely and rocky soils formed under a continental climate which shifted to an oceanic climate around 10,000 cal yr BP when grasses, sedges and finally shrubs began to dominant the islands. Here we present data from three lake sediment cores and show a much more detailed history from geochemical and isotope data. These data show that the Faroe Islands were deglaciated by the end of Younger Dryas (11,700 10,300 cal yr BP), at this time relatively high sedimentation rates with high delta C-13 imply poor soil development. delta C-13, Ti and chi data reveal a much more stable and warm mid-Holocene until 7410 cal yr BP characterised by increasing vegetation cover and build up of organic soils towards the Holocene thermal maximum around 7400 cal yr BP. The final meltdown of the Laurentide ice sheet around 7000 cal yr BP appears to have impacted both ocean and atmospheric circulation towards colder conditions on the Faroe Islands. This is inferred by enhanced weathering and increased deposition of surplus sulphur (sea spray) and erosion in the highland lakes from about 7400 cal yr BP. From 4190 cal yr BP further cooling is believed to have occurred as a consequence for increased soil erosion due to freeze/thaw sequences related to oceanic and atmospheric variability. This cooling trend appears to have advanced further from 3000 cal yr BR A short period around 1800 cal yr BP appears as a short warm and wet phase in between a general cooling characterised by significant soil erosion lasting until 725 cal yr BP. Interestingly, increased soil erosion seems to have begun at 1360 cal yr BP, thus significantly before the arrival of the first settlers on the Faroe Island around 1150 cal yr BP, although additional erosion took place around 1200 cal yr BP possibly as a consequence of human activities. Hence it appears that if humans caused a change in the Faroe landscape in terms of erosion they in fact accelerated a process that had already started. Soil erosion was a dominant landscape factor during the Little Ice Age, but climate related triggers can hardly be distinguished from human activities. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Polypropylene (PP), a semi-crystalline material, is typically solid phase thermoformed at temperatures associated with crystalline melting, generally in the 150° to 160°Celsius range. In this very narrow thermoforming window the mechanical properties of the material rapidly decline with increasing temperature and these large changes in properties make Polypropylene one of the more difficult materials to process by thermoforming. Measurement of the deformation behaviour of a material under processing conditions is particularly important for accurate numerical modelling of thermoforming processes. This paper presents the findings of a study into the physical behaviour of industrial thermoforming grades of Polypropylene. Practical tests were performed using custom built materials testing machines and thermoforming equipment at Queen′s University Belfast. Numerical simulations of these processes were constructed to replicate thermoforming conditions using industry standard Finite Element Analysis software, namely ABAQUS and custom built user material model subroutines. Several variant constitutive models were used to represent the behaviour of the Polypropylene materials during processing. This included a range of phenomenological, rheological and blended constitutive models. The paper discusses approaches to modelling industrial plug-assisted thermoforming operations using Finite Element Analysis techniques and the range of material models constructed and investigated. It directly compares practical results to numerical predictions. The paper culminates discussing the learning points from using Finite Element Methods to simulate the plug-assisted thermoforming of Polypropylene, which presents complex contact, thermal, friction and material modelling challenges. The paper makes recommendations as to the relative importance of these inputs in general terms with regard to correlating to experimentally gathered data. The paper also presents recommendations as to the approaches to be taken to secure simulation predictions of improved accuracy.
Resumo:
A rapid liquid chromatographic-tandem mass spectrometric (LC-MS/MS) multi-residue method for the simultaneous quantitation and identification of sixteen synthetic growth promoters and bisphenol A in bovine milk has been developed and validated. Sample preparation was straightforward, efficient and economically advantageous. Milk was extracted with acetonitrile followed by phase separation with NaCl. After centrifugation, the extract was purified by dispersive solid-phase extraction with C18 sorbent material. The compounds were analysed by reversed-phase LC-MS/MS using both positive and negative ionization and operated in multiple reaction monitoring (MRM) mode, acquiring two diagnostic product ions from each of the chosen precursor ions for unambiguous confirmation. Total chromatographic run time was less than 10 min for each sample. The method was validated at a level of 1 mu g L-1. A wide variety of deuterated internal standards were used to improve method performance. The accuracy and precision of the method were satisfactory for all analytes. The confirmative quantitative liquid chromatographic tandem mass spectrometric (LC-MS/MS) method was validated according to Commission Decision 2002/657/EC. The decision limit (CC alpha) and the detection capability (CC beta) were found to be below the chosen validation level of 1 mu g L-1 for all compounds. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The localized deposition of the energy of a laser pulse, as it ablates a solid target, introduces high thermal pressure gradients in the plasma. The thermal expansion of this laser-heated plasma into the ambient medium (ionized residual gas) triggers the formation of non-linear structures in the collisionless plasma. Here an electron-proton plasma is modelled with a particle-in-cell simulation to reproduce aspects of this plasma expansion. A jump is introduced in the thermal pressure of the plasma, across which the otherwise spatially uniform temperature and density change by a factor of 100. The electrons from the hot plasma expand into the cold one and the charge imbalance drags a beam of cold electrons into the hot plasma. This double layer reduces the electron temperature gradient. The presence of the low-pressure plasma modifies the proton dynamics compared with the plasma expansion into a vacuum. The jump in the thermal pressure develops into a primary shock. The fast protons, which move from the hot into the cold plasma in the form of a beam, give rise to the formation of phase space holes in the electron and proton distributions. The proton phase space holes develop into a secondary shock that thermalizes the beam.
Resumo:
A chain of singly charged particles, confined by a harmonic potential, exhibits a sudden transition to a zigzag configuration when the radial potential reaches a critical value, depending on the particle number. This structural change is a phase transition of second order, whose order parameter is the crystal displacement from the chain axis. We study analytically the transition using Landau theory and find full agreement with numerical predictions by Schiffer [Phys. Rev. Lett. 70, 818 (1993)] and Piacente [Phys. Rev. B 69, 045324 (2004)]. Our theory allows us to determine analytically the system's behavior at the transition point.
Resumo:
Using a combination of experimental and computational techniques, changes in the domain structures seen infreestanding single-crystal platelets of BaTiO3 have been described in terms of a second-order phase transition.The transition is driven by the change in the length-to-width ratio of the platelet sidewalls and results in a symmetrybreaking of a complex, quadrant domain pattern. The phenomenon can be described by a Landau formalism inwhich (1) the order parameter is not the polarization but rather is the degree to which the domain pattern becomesoff-centered, and (2) the shape anisotropy of the platelet substitutes for temperature in the conventional Landauexpansion as the controlling thermodynamic variable. Bistability, in terms of the direction in which the domainpattern moves off center, coupled with the spontaneous macroscopic polarization and toroidal moment that resultfrom this off-centering, prompt the possibility of a new form of memory storage.
Resumo:
Prothrombin interacts with phosphatidylserine containing platelet membranes via its N-terminal, gamma-carboxyglutamate (gla) residue-rich domain. Once bound it is cleaved to form the active protease, thrombin (factor IIa). Human prothrombin was cleaved with cathepsin G in the absence of calcium and magnesium ions. Under these conditions, the gla domain was removed. Phospholipid protected the protein from this proteolytic event, and this suggests that a conformational change may be induced by interaction with phospholipids. Binding of prothrombin to a surface containing 20% phosphatidylserine/80% phosphatidylcholine was detected by surface plasmon resonance, whereas no interaction with gla-domainless prothrombin was observed. Binding of intact prothrombin in the presence of calcium ions showed complex association kinetics, suggesting multiple modes of initial interaction with the surface. The kinetics of the dissociation phase could be fitted to a two-phase, exponential decay. This implies that there are at least two forms of the protein on the surface one of which dissociates tenfold more slowly than the other. Taken together, these data suggest that, on binding to a membrane surface, prothrombin undergoes a conformational change to a form which binds more tightly to the membrane.
Resumo:
This paper brings to the forefront students’ views on one of the most significant aspects of education in the 14-19 phase, specifically the qualifications, examinations and assessment they experience. In this respect the paper foregrounds students as ‘policy actors’, they are significant players in the mediation of national qualification systems rather than just subjects in their implementation. Data from a national dataset of focus groups with 243 students from the 14-19 phase is presented. Key themes are highlighted relating to young people’s experiences of qualifications, examinations and assessment at this stage of education in a context of continuous initiatives and change as well as the impact of students being on the receiving end of qualification reform in situ which can be confusing, unsettling and ultimately detrimental to future success.
Resumo:
Testate amoebae have been used widely as a proxy of hydrological change in ombrotrophic peatlands, although their response to abiotic controls in other types of mire and fenland palaeo-environments is less well understood. This paper examines the response of testate amoebae to hydroseral and other environmental changes at Mer Bleue Bog, Ontario, Canada, a large ombrotrophic peatland, which evolved from a brackish-water embayment in the early Holocene. Sediments, plant macrofossils and diatoms examined from a 5.99 m core collected from the dome of the bog record six stages of development: i) a quiet, brackish-water riverine phase (prior to ca. 8500 cal BP); ii) a shallow lake (ca. 8500–8200 cal BP); iii) fen (8200–7600 cal BP); iv) transitional mire (7600–6900 cal BP); v) pioneer raised mire (6900–4450 cal BP); and vi) ombrotrophic bog (4450 cal BP-present).
Testate amoebae, notably small (<25 µm diameter) specimens of Centropyxis aculeata type, first appear in low abundances in sediments ascribed to the lacustrine phase. Diatoms from the same horizons record a shallowing in water depth, a decline in salinity and the development of emergent macrophytic vegetation, which may have provided favourable conditions for testate amoeba colonization. The testate amoeba communities of the inferred fen phase are more diverse and include centropyxids, cyclopyxids, Arcellidae and Hyalospheniidae, although the assemblages show some differences to those recently reported in modern European fen environments. The Fen–Bog Transition (FBT) is also dominated by C. aculeata type. The change in testate amoeba communities around this key transition is apparent in the results of Detrended Correspondence Analysis (DCA), and appears to reflect a latent nutrient gradient and a secondary moisture gradient. DCA analyses of plant macrofossil remains around the FBT show a similar trend, although the sensitivity of the two proxies to the inferred environmental changes differs. Comparisons with other regional mid-Holocene peatland records confirm the important influence of reduced effective precipitation on the testate amoeba communities during the initiation and development of Sphagnum-dominated, raised bog communities.
Resumo:
This paper aims to contribute to the ongoing debate on the use of resource accounting tools in regional policy making. The Northern Limits project applied Material Flow Analysis and Ecological Footprinting to regional policy making in Northern Ireland over a number of years. The early phase of the research informed the regions first sustainable development strategy which was published in 2006 with key targets relating to the Ecological Footprint and improving the resource efficiency of the economy. Phase II identified the next steps required to address data availability and quality and the use of MFA and EF in providing a measurement and monitoring framework for the strategy and in the development of the strategy implementation plan. The use of MFA and Ecological Footprinting in sustainable regional policy making and the monitoring of its implementation is an ongoing process which has raised a number of research issues which can inform the ongoing application and development of these and other resource accounting tools to within Northern Ireland, provide insights for their use in other regions and help set out the priorities for research to support this important policy area.
Resumo:
Polypropylene sheets have been stretched at 160 °C to a state of large biaxial strain of extension ratio 3, and the stresses then allowed to relax at constant strain. The state of strain is reached via a path consisting of two sequential planar extensions, the second perpendicular to the first, under plane stress conditions with zero stress acting normal to the sheet. This strain path is highly relevant to solid phase deformation processes such as stretch blow moulding and thermoforming, and also reveals fundamental aspects of the flow rule required in the constitutive behaviour of the material. The rate of decay of stress is rapid, and such as to be highly significant in the modelling of processes that include stages of constant strain. A constitutive equation is developed that includes Eyring processes to model both the stress relaxation and strain rate dependence of the stress. The axial and transverse stresses observed during loading show that the use of a conventional Levy-Mises flow rule is ineffective, and instead a flow rule is used that takes account of the anisotropic state of the material via a power law function of the principal extension ratios. Finally the constitutive model is demonstrated to give quantitatively useful representation of the stresses both in loading and in stress relaxation.
Resumo:
Time-resolved DRIFTS, MS, and resistance measurements were used to study the interaction of undoped and Pd-doped SnO2 with H-2 in air and argon at 300 degrees C. Using first-order kinetics, we compare the time constants for the resistance drop and its partial recovery with those of the surface hydroxyl evolution and water formation in the gas phase upon exposure to hydrogen. In the case of the undoped oxide, resistance and bridging hydroxyls (BOHs) evolve similarly, manifesting a fast main drop followed by recovery at a similar rate. The rate of water formation for this material was found to be much slower than that of the main drop in both the resistance and BOHs. In contrast, the resistance change for SnO2-Pd appeared to be similar to that of water formation, and no correlation was found between the evolution of resistance and surface OHs. Isotopic exchange on both materials revealed that water formation occurs via fast and slow hydrogen transfer to surface oxygen species. While the former originates from just-adsorbed hydrogen, the latter appears to proceed from the preadsorbed OHs. Both surfaces exhibit close interaction between chemisorbed oxygen and existing bridging OH groups, indicating that the latter is an intermediate in the hydrogen oxidation and generation of donor states on the surface.
Resumo:
The metal-organic framework [Co(INA)(2)].0.5EtOH (INA = isonicotinate, NC5H4-4-CO2-), 1 was synthesised under solvothermal conditions. Its X-ray crystal structure shows channels containing ethanol guests which are hydrogen-bonded to carboxylate oxygens of the framework. The pyridyl rings of the framework alternate between `open' and `closed' positions along the channels resulting in large variation in the channel cross-sectional area from ca. 1.4 by 2.3 at the narrowest point to 4.9 by 5.3 at the widest. Despite the very small windows, the ethanol guests (of van der Waals diameter ca. 4.2-6.1 Angstrom) may be reversibly desorbed and sorbed into the structure quantitatively, as shown by in situ variable-temperture IR spectroscopy and XRPD. The single-crystal structure of the desolvated form [Co(INA)(2)]2 shows that there is no change in the overall connectivity on desolvation, but the rotational positions of the pyridine rings are altered. This suggests that pyridyl rotation may occur to allow guests to pass in and out. When the synthesis was conducted in 1-propanol solvent [Co(INA)(2)].0.5Pr(n)OH.H2O 3, was obtained, and a single-crystal X-ray structure revealed the same overall connectivity as in 1 but with pyridine rings disordered over closed and open positions. There was no evidence of included guests from X-ray crystallography, suggesting that they are also highly disordered. Variable-temperature XRPD performed on bulk samples showed peaks which were unsymmetrical and exhibited shoulders, suggesting that for each pattern obtained the material actually consisted of several closely-related phases. The movements of the peaks during desolvation showed the presence of intermediate phases before the final desolvated product was formed. The peak positions of the intermediate phases matched more closely with the calculated pattern for 3 than with 1 or 2, suggesting that they may have disordered structures similar to 3. The results also suggest that the intermediate phase represents an initial increase in volume before a larger decrease in volume occurs to give the final desolvated material.
Resumo:
In this paper we extend the derivation of the modified form Snells's law that occurs when an additional phase profile is introduced at the material interface. We show that this permits electromagnetic (EM) beam steering, negative refraction and retrodirective action opportunities for such engineered surfaces even if they are immersed in a uniform dielectric. Simple expressions for the retrodirected and negatively refracted beams are derived along with the propagation conditions that occur at the boundary interface inside the critical angle range. It is also demonstrated how the transmission and reflected power levels are affected by the additional phase taper introduced at the surface.