985 resultados para Peer review -- Congresses
Resumo:
Recent literature has argued that environmental efficiency (EE), which is built on the materials balance (MB) principle, is more suitable than other EE measures in situations where the law of mass conversation regulates production processes. In addition, the MB-based EE method is particularly useful in analysing possible trade-offs between cost and environmental performance. Identifying determinants of MB-based EE can provide useful information to decision makers but there are very few empirical investigations into this issue. This article proposes the use of data envelopment analysis and stochastic frontier analysis techniques to analyse variation in MB-based EE. Specifically, the article develops a stochastic nutrient frontier and nutrient inefficiency model to analyse determinants of MB-based EE. The empirical study applies both techniques to investigate MB-based EE of 96 rice farms in South Korea. The size of land, fertiliser consumption intensity, cost allocative efficiency, and the share of owned land out of total land are found to be correlated with MB-based EE. The results confirm the presence of a trade-off between MB-based EE and cost allocative efficiency and this finding, favouring policy interventions to help farms simultaneously achieve cost efficiency and MP-based EE.
Resumo:
Recent literature has argued that environmental efficiency (EE), which is built on the materials balance (MB) principle, is more suitable than other EE measures in situations where the law of mass conversation regulates production processes. In addition, the MB-based EE method is particularly useful in analysing possible trade-offs between cost and environmental performance. Identifying determinants of MB-based EE can provide useful information to decision makers but there are very few empirical investigations into this issue. This article proposes the use of data envelopment analysis and stochastic frontier analysis techniques to analyse variation in MB-based EE. Specifically, the article develops a stochastic nutrient frontier and nutrient inefficiency model to analyse determinants of MB-based EE. The empirical study applies both techniques to investigate MB-based EE of 96 rice farms in South Korea. The size of land, fertiliser consumption intensity, cost allocative efficiency, and the share of owned land out of total land are found to be correlated with MB-based EE. The results confirm the presence of a trade-off between MB-based EE and cost allocative efficiency and this finding, favouring policy interventions to help farms simultaneously achieve cost efficiency and MP-based EE.
Resumo:
The thermal decomposition and dehydroxylation process of coal-bearing strata kaolinite–potassium acetate intercalation complex (CSKK) has been studied using X-ray diffraction (XRD), infrared spectroscopy (IR), thermal analysis, mass spectrometric analysis and infrared emission spectroscopy. The XRD results showed that the potassium acetate (KAc) have been successfully intercalated into coal-bearing strata kaolinite with an obvious basal distance increase of the first basal peak, and the positive correlation was found between the concentration of intercalation regent KAc and the degree of intercalation. As the temperature of the system is raised, the formation of KHCO3, KCO3 and KAlSiO4, which is derived from the thermal decomposition or phase transition of CSKK, is observed in sequence. The IR results showed that new bands appeared, the position and intensities shift can also be found when the concentration of intercalation agent is raised. The thermal analysis and mass spectrometric analysis results revealed that CSKK is stable below 300 °C, and the thermal decomposition products (H2O and CO2) were further proved by the mass spectrometric analysis. A comparison of thermal analysis results of original coal-bearing strata kaolinite and its intercalation complex gives new discovery that not only a new mass loss peak is observed at 285 °C, but also the temperature of dehydroxylation and dehydration of coal bearing strata kaolinite is decreased about 100 °C. This is explained on the basis of the interlayer space of the kaolinite increased obviously after being intercalated by KAc, which led to the interlayer hydrogen bonds weakened, enables the dehydroxylation from kaolinite surface more easily. Furthermore, the possible structural model for CSKK has been proposed, with further analysis required in order to prove the most possible structures.
Resumo:
The structure of the borate mineral sakhaite Ca12Mg4(BO3)7(CO3)4Cl(OH)2·H2O, a borate–carbonate of calcium and magnesium has been assessed using vibrational spectroscopy. Assignment of bands is undertaken by comparison with the data from other published results. Intense Raman band at 1134 cm−1 with a shoulder at 1123 cm−1 is assigned to the symmetric stretching mode. The Raman spectrum displays bands at 1479, 1524 and 1560 cm−1 which are assigned to the antisymmetric stretching vibrations. The observation of multiple carbonate stretching bands supports the concept that the carbonate units are non-equivalent. The Raman band at 968 cm−1 with a shoulder at 950 cm−1 is assigned to the symmetric stretching mode of trigonal boron. Raman bands at 627 and 651 cm−1 are assigned to the out-of-plane bending modes of trigonal and tetrahedral boron. Raman spectroscopy coupled with infrared spectroscopy enables the molecular structure of the mineral sakhaite to be assessed.
Resumo:
Jeremejevite is a borate mineral of aluminium and is of variable colour, making the mineral and important inexpensive jewel. The mineral contains variable amounts of F and OH, depending on origin. A comparison of the vibrational spectroscopic data is made with the published data of borate minerals. Raman spectra were averaged over a range of crystal orientations. Two intense Raman bands observed at 961 and 1067 cm−1 are assigned to the symmetric stretching and antisymmetric stretching modes of trigonal boron. Infrared spectrum, bands observed at 1229, 1304, 1350, 1388 and 1448 cm−1 are attributed to BOH in-plane bending modes. Intense Raman band found at 372 cm−1 with other bands of significant intensity at 327 and 417 cm−1 is assigned to trigonal borate bending modes. A quite intense Raman band is found at 3673 cm−1 with other sharp Raman bands found at 3521, 3625 and 3703 cm−1 are assigned to the stretching modes of OH. Raman and infrared spectroscopy has been used to assess the molecular structure of the mineral jeremejevite. Such research is important in the study of borate based nanomaterials.
Resumo:
Boracite is a magnesium borate mineral with formula: Mg3B7O13Cl and occurs as blue green, colorless, gray, yellow to white crystals in the orthorhombic – pyramidal crystal system. An intense Raman band at 1009 cm−1 was assigned to the BO stretching vibration of the B7O13 units. Raman bands at 1121, 1136, 1143 cm−1 are attributed to the in-plane bending vibrations of trigonal boron. Four sharp Raman bands observed at 415, 494, 621 and 671 cm−1 are simply defined as trigonal and tetrahedral borate bending modes. The Raman spectrum clearly shows intense Raman bands at 3405 and 3494 cm−1, thus indicating that some Cl anions have been replaced with OH units. The molecular structure of a natural boracite has been assessed by using vibrational spectroscopy.
Resumo:
The mineral beryllonite has been characterized by the combination of Raman spectroscopy and infrared spectroscopy. SEM–EDX was used for the chemical analysis of the mineral. The intense sharp Raman band at 1011 cm-1, was assigned to the phosphate symmetric stretching mode. Raman bands at 1046, 1053, 1068 and the low intensity bands at 1147, 1160 and 1175 cm-1 are attributed to the phosphate antisymmetric stretching vibrations. The number of bands in the antisymmetric stretching region supports the concept of symmetry reduction of the phosphate anion in the beryllonite structure. This concept is supported by the number of bands found in the out-of-plane bending region. Multiple bands are also found in the in-plane bending region with Raman bands at 399, 418, 431 and 466 cm-1. Strong Raman bands at 304 and 354 cm-1 are attributed to metal oxygen vibrations. Vibrational spectroscopy served to determine the molecular structure of the mineral. The pegmatitic phosphate minerals such as beryllonite are more readily studied by Raman spectroscopy than infrared spectroscopy.
Resumo:
The starting point for this presentation is that applicants provide a large surplus of information when submitting a NHMRC Project Grant proposal for funding. This is costly in their time, attracts high administration costs, makes the task appear daunting for peer reviewers and may reduce the quality of the peer review leading to less than perfect reliability in decision making. We are currently experimenting with alternate models to see whether similar reliability in funding outcomes are achieved at less cost. We will compare traditional NHMRC Grant Review Panels (GRPs) with panels that use less information and journal style panels. By way of background to this experimental work, we will show some results on current levels of reliability for GRPs, the costs incurred by all who participate in Project Grant selection, and the level of reliability acceptable to researchers. By experimenting in this way and building an evidence base for how research funding should be allocated, the NHMRC is showing international leadership in this important field.
Resumo:
Catalytic decomposition is a very attractive way to convert tar components into H2, CO and other useful chemicals. The performance of Fe3Ni8/PG (palygorskite, PG) reduced in hydrogen at different temperatures for the catalytic decomposition of benzene has been assessed. Benzene was used as the model biomass tar. The effects of calcination atmosphere, temperatures and benzene concentration on catalytic cracking of benzene were measured. The results of XRD (X-Ray Diffraction), TEM (Transmission Electron Microscope), TPR (Temperature Program Reduction), TPSR (Temperature Program Surface Reduction), TC (Total Carbon), the reactivity component and reaction mechanism over Fe3Ni8/PG for catalytic cracking of benzene are discussed. The results showed particles of awaruite (Fe, Ni) about 2–30 nm were found on the surface of palygorskite by TEM when the calcination temperature was 600 °C. Particles with size smaller than 30 nm were obtained on all prepared Fe3Ni8/PG catalysts as shown by XRD. The nanoparticles proved to be the reactive component for catalytic cracking of benzene and the increase of active particle size caused the decrease in the reactivity of Fe3Ni8/PG. Fe3Ni8/PG annealed in hydrogen at 600 °C was proved to have the best reactivity in experiments (45% hydrogen yield). High concentration benzene (448 g/m3) accelerated the formation of carbon deposition. However, iron oxide decreases carbon deposition and increases the stability of catalyst for catalytic cracking of benzene. The application of Fe3Ni8/PG catalysts was proved a very effective catalyst for the catalytic cracking of benzene.
Resumo:
The design and construction community has shown increasing interest in adopting building information models (BIMs). The richness of information provided by BIMs has the potential to streamline the design and construction processes by enabling enhanced communication, coordination, automation and analysis. However, there are many challenges in extracting construction-specific information out of BIMs. In most cases, construction practitioners have to manually identify the required information, which is inefficient and prone to error, particularly for complex, large-scale projects. This paper describes the process and methods we have formalized to partially automate the extraction and querying of construction-specific information from a BIM. We describe methods for analyzing a BIM to query for spatial information that is relevant for construction practitioners, and that is typically represented implicitly in a BIM. Our approach integrates ifcXML data and other spatial data to develop a richer model for construction users. We employ custom 2D topological XQuery predicates to answer a variety of spatial queries. The validation results demonstrate that this approach provides a richer representation of construction-specific information compared to existing BIM tools.
Resumo:
The standard one-sector real business cycle model is unable to generate expectations-driven fluctuations. The addition of countercyclical mark-ups and modest investment adjustment costs offers an easy fix to this conundrum. The simulated model replicates the regular features of U.S. aggregate fluctuations.
Resumo:
Fourteen new complexes of the form cis-\[RuIIX2(R2qpy2+)2]4+ (R2qpy2+ = a 4,4′:2′,2″:4″,4‴-quaterpyridinium ligand, X = Cl− or NCS−) have been prepared and isolated as their PF6− salts. Characterisation involved various techniques including 1H NMR spectroscopy and +electrospray or MALDI mass spectrometry. The UV–Vis spectra display intense intraligand π → π∗ absorptions, and also metal-to-ligand charge-transfer (MLCT) bands with two resolved maxima in the visible region. Red-shifts in the MLCT bands occur as the electron-withdrawing strength of the pyridinium groups increases, while replacing Cl− with NCS− causes blue-shifts. Cyclic voltammograms show quasi-reversible or reversible RuIII/II oxidation waves, and several ligand-based reductions that are irreversible. The variations in the redox potentials correlate with changes in the MLCT energies. A single-crystal X-ray structure has been obtained for a protonated form of a proligand salt, \[(4-(CO2H)Ph)2qpyH3+]\[HSO4]3·3H2O. Time-dependent density functional theory calculations give adequate correlations with the experimental UV–Vis spectra for the two carboxylic acid-functionalised complexes in DMSO. Despite their attractive electronic absorption spectra, these dyes are relatively inefficient photosensitisers on electrodes coated with TiO2 or ZnO. These observations are attributed primarily to weak electronic coupling with the surfaces, since the DFT-derived LUMOs include no electron density near the carboxylic acid anchors.
Resumo:
A Poly (ethylene oxide) based polymer electrolyte impregnated with 2-Mercapto benzimidazole was comprehensively characterized by XRD, UV–visible spectroscopy, FTIR as well as electrochemical impedance spectroscopy. It was found that the crystallization of PEO was dramatically reduced and the ionic conductivity of the electrolyte was increased 4.5 fold by addition of 2-Mercapto benzimidazole. UV–visible and FTIR spectroscopes indicated the formation of charge transfer complex between 2-Mercapto benzimidazole and iodine of the electrolyte. Dye-sensitized solar cells with the polymer electrolytes were assembled. It was found that both the photocurrent density and photovoltage were enhanced with respect to the DSC without 2-Mercapto benzimidazole, leading to a 60% increase of the performance of the cell.
Resumo:
There is a worldwide demand for an increasingly sustainable built environment. This has resulted in the need for a more accurate evaluation of the level of sustainability of construction projects. To do this it involves the development of better measurement and benchmarking methods. One approach is to use a theoretical model to assess construction projects in terms of their sustainable development value (SDV) and sustainable development ability (SDA) for implementation in the project life cycle, where SDA measures the contribution of a project to development sustainability and as a major criterion for assessing its feasibility. This paper develops an improved SDA prototype model that incorporates the effects of dynamical factors on project sustainability. This involves the introduction of two major factors concerning technological advancement and changes in people's perceptions. A case study is used to demonstrate the procedures involved in simulation and modeling, one outcome of which is to demonstrate the greater influence of technological advancement on project sustainability than changes in perception.
Resumo:
This article proposes an approach for real-time monitoring of risks in executable business process models. The approach considers risks in all phases of the business process management lifecycle, from process design, where risks are defined on top of process models, through to process diagnosis, where risks are detected during process execution. The approach has been realized via a distributed, sensor-based architecture. At design-time, sensors are defined to specify risk conditions which when fulfilled, are a likely indicator of negative process states (faults) to eventuate. Both historical and current process execution data can be used to compose such conditions. At run-time, each sensor independently notifies a sensor manager when a risk is detected. In turn, the sensor manager interacts with the monitoring component of a business process management system to prompt the results to process administrators who may take remedial actions. The proposed architecture has been implemented on top of the YAWL system, and evaluated through performance measurements and usability tests with students. The results show that risk conditions can be computed efficiently and that the approach is perceived as useful by the participants in the tests.