896 resultados para Pattern-based interaction models
Resumo:
Data were collected and analysed from seven field sites in Australia, Brazil and Colombia on weather conditions and the severity of anthracnose disease of the tropical pasture legume Stylosanthes scabra caused by Colletotrichum gloeosporioides. Disease severity and weather data were analysed using artificial neural network (ANN) models developed using data from some or all field sites in Australia and/or South America to predict severity at other sites. Three series of models were developed using different weather summaries. of these, ANN models with weather for the day of disease assessment and the previous 24 h period had the highest prediction success, and models trained on data from all sites within one continent correctly predicted disease severity in the other continent on more than 75% of days; the overall prediction error was 21.9% for the Australian and 22.1% for the South American model. of the six cross-continent ANN models trained on pooled data for five sites from two continents to predict severity for the remaining sixth site, the model developed without data from Planaltina in Brazil was the most accurate, with >85% prediction success, and the model without Carimagua in Colombia was the least accurate, with only 54% success. In common with multiple regression models, moisture-related variables such as rain, leaf surface wetness and variables that influence moisture availability such as radiation and wind on the day of disease severity assessment or the day before assessment were the most important weather variables in all ANN models. A set of weights from the ANN models was used to calculate the overall risk of anthracnose for the various sites. Sites with high and low anthracnose risk are present in both continents, and weather conditions at centres of diversity in Brazil and Colombia do not appear to be more conducive than conditions in Australia to serious anthracnose development.
Resumo:
The aggregation theory of mathematical programming is used to study decentralization in convex programming models. A two-level organization is considered and a aggregation-disaggregation scheme is applied to such a divisionally organized enterprise. In contrast to the known aggregation techniques, where the decision variables/production planes are aggregated, it is proposed to aggregate resources allocated by the central planning department among the divisions. This approach results in a decomposition procedure, in which the central unit has no optimization problem to solve and should only average local information provided by the divisions.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We consider a two-dimensional integrable and conformally invariant field theory possessing two Dirac spinors and three scalar fields. The interaction couples bilinear terms in the spinors to exponentials of the scalars. Its integrability properties are based on the sl(2) affine Kac-Moody algebra, and it is a simple example of the so-called conformal affine Toda theories coupled to matter fields. We show, using bosonization techniques, that the classical equivalence between a U(1) Noether current and the topological current holds true at the quantum level, and then leads to a bag model like mechanism for the confinement of the spinor fields inside the solitons. By bosonizing the spinors we show that the theory decouples into a sine-Gordon model and free scalars. We construct the two-soliton solutions and show that their interactions lead to the same time delays as those for the sine-Gordon solitons. The model provides a good laboratory to test duality ideas in the context of the equivalence between the sine-Gordon and Thirring theories. © 2000 Elsevier Science B.V. All rights reserved.
Resumo:
In this article we describe a feature extraction algorithm for pattern classification based on Bayesian Decision Boundaries and Pruning techniques. The proposed method is capable of optimizing MLP neural classifiers by retaining those neurons in the hidden layer that realy contribute to correct classification. Also in this article we proposed a method which defines a plausible number of neurons in the hidden layer based on the stem-and-leaf graphics of training samples. Experimental investigation reveals the efficiency of the proposed method. © 2002 IEEE.
Resumo:
Additive and nonadditive genetic effects on preweaning weight gain (PWG) of a commercial crossbred population were estimated using different genetic models and estimation methods. The data set consisted of 103,445 records on purebred and crossbred Nelore-Hereford calves raised under pasture conditions on farms located in south, southeast, and middle west Brazilian regions. In addition to breed additive and dominance effects, the models including different epistasis covariables were tested. Models considering joint additive and environment (latitude) by genetic effects interactions were also applied. In a first step, analyses were carried out under animal models. In a second step, preadjusted records were analyzed using ordinary least squares (OLS) and ridge regression (RR). The results reinforced evidence that breed additive and dominance effects are not sufficient to explain the observed variability in preweaning traits of Bos taurus x Bos indicus calves, and that genotype x environment interaction plays an important role in the evaluation of crossbred calves. Data were ill-conditioned to estimate the effects of genotype x environment interactions. Models including these effects presented multicolinearity problems. In this case, RR seemed to be a powerful tool for obtaining more plausible and stable estimates. Estimated prediction error variances and variance inflation factors were drastically reduced, and many effects that were not significant under ordinary least squares became significant under RR. Predictions of PWG based on RR estimates were more acceptable from a biological perspective. In temperate and subtropical regions, calves with intermediate genetic compositions (close to 1/2 Nelore) exhibited greater predicted PWG. In the tropics, predicted PWG increased linearly as genotype got closer to Nelore. ©2006 American Society of Animal Science. All rights reserved.
Resumo:
We present results on the the influence of changes in the masses and sizes of D mesons and nucleons on elastic DN scattering cross sections and phase shifts in a hadronic medium composed of confined quarks in nucleons. We evaluate the changes of the hadronic masses due to changes of the light constituent quarks at finite baryon density using a chiral quark model based on Coulomb gauge QCD. The model contains a confining Coulomb potential and a transverse hyperfine interaction consistent with a finite gluon propagator in the infrared. We present results for the total cross section and the s-wave phase shift at low energies for isospin I=1-for I=0 and other partial waves the results are similar.
Resumo:
Simulation of large and complex systems, such as computing grids, is a difficult task. Current simulators, despite providing accurate results, are significantly hard to use. They usually demand a strong knowledge of programming, what is not a standard pattern in today's users of grids and high performance computing. The need for computer expertise prevents these users from simulating how the environment will respond to their applications, what may imply in large loss of efficiency, wasting precious computational resources. In this paper we introduce iSPD, iconic Simulator of Parallel and Distributed Systems, which is a simulator where grid models are produced through an iconic interface. We describe the simulator and its intermediate model languages. Results presented here provide an insight in its easy-of-use and accuracy.
Resumo:
The dynamics of the AFM-atomic force microscope follows a model based in a Timoshenko cantilever beam with a tip attached at the free end and acting with the surface of a sample. General boundary conditions arise when the tip is either in contact or non-contact with the surface. The governing equations are given in matrix conservative form subject to localized loads. The eigenanalysis is done with a fundamental matrix response of a damped second-order matrix differential equation. Forced responses are found by using a Galerkin approximation of the matrix impulse response. Simulations results with harmonic and pulse forcing show the filtering character and the effects of the tip-sample interaction at the end of the beam. © 2012 American Institute of Physics.
Resumo:
This paper presents a new approach for damage detection in Structural Health Monitoring (SHM) systems, which is based on the Electromechanical Impedance (EMI) principle and Autoregressive (AR) models. Typical applications of EMI in SHM are based on computing the Frequency Response Function (FRF). In this work the procedure is based on the EMI principle but the results are determined through the coefficients of AR models, which are computed from the time response of PZT transducers bonded to the monitored structure, and acting as actuator and sensors at the same time. The procedure is based on exciting the PZT transducers using a wide band chirp signal and getting its time response. The AR models are obtained in both healthy and damaged conditions and used to compute statistics indexes. Practical tests were carried out in an aluminum plate and the results have demonstrated the effectiveness of the proposed method. © 2012 IEEE.
Resumo:
This paper presents a tool that combines two kinds of Petri Net analyses to set the fastest routes to one vehicle in a bounded area of traffic urban. The first analysis consists of the discovery of possible routes in a state space generated from an IOPT Petri net model given the initial marking as the vehicle position. The second analysis receives the routes found in the first analysis and calculates the state equations at incidence matrix created from the High Level Petri net model to define the fastest route for each vehicle that arrive in the roads. It was considered the exchange of information between vehicle and infrastructure (V2I) to get the position and speed of all vehicles and support the analyses. With the results obtained we conclude that is possible optimizing the urban traffic flow if this tool is applied to all vehicles in a bounded urban traffic. © 2012 IEEE.
Resumo:
Community ecology seeks to understand and predict the characteristics of communities that can develop under different environmental conditions, but most theory has been built on analytical models that are limited in the diversity of species traits that can be considered simultaneously. We address that limitation with an individual-based model to simulate assembly of fish communities characterized by life history and trophic interactions with multiple physiological tradeoffs as constraints on species performance. Simulation experiments were carried out to evaluate the distribution of 6 life history and 4 feeding traits along gradients of resource productivity and prey accessibility. These experiments revealed that traits differ greatly in importance for species sorting along the gradients. Body growth rate emerged as a key factor distinguishing community types and defining patterns of community stability and coexistence, followed by egg size and maximum body size. Dominance by fast-growing, relatively large, and fecund species occurred more frequently in cases where functional responses were saturated (i.e. high productivity and/or prey accessibility). Such dominance was associated with large biomass fluctuations and priority effects, which prevented richness from increasing with productivity and may have limited selection on secondary traits, such as spawning strategies and relative size at maturation. Our results illustrate that the distribution of species traits and the consequences for community dynamics are intimately linked and strictly dependent on how the benefits and costs of these traits are balanced across different conditions. © 2012 Elsevier B.V.
Resumo:
Includes bibliography
Resumo:
Este trabalho objetivou predizer parâmetros da estrutura de associações macrobentônicas (composição específica, abundância, riqueza, diversidade e equitatividade) em estuários do Sul do Brasil, utilizando modelos baseados em dados ambientais (características dos sedimentos, salinidade, temperaturas do ar e da água, e profundidade). As amostragens foram realizadas sazonalmente em cinco estuários entre o inverno de 1996 e o verão de 1998. Em cada estuário as amostras foram coletadas em áreas não poluídas, com características semelhantes quanto a presença ou ausência de vegetação, profundidade e distância da desenbocadura. Para a obtenção dos modelos de predição, foram utilizados dois métodos: o primeiro baseado em Análise Discriminante Múltipla (ADM) e o segundo em Regressão Linear Múltipla (RLM). Os modelos baseados em ADM apresentaram resultados melhores do que os baseados em regressão linear. Os melhores resultados usando RLM foram obtidos para diversidade e riqueza. É possível então, concluir que modelos como aqui derivados podem representar ferramentas muito úteis em estudos de monitoramento ambiental em estuários.