937 resultados para Parameter expansion
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The measurement of the mixing angle theta(13), sign of Deltam(13)(2), and the CP or T violating phase delta is fraught with ambiguities in neutrino oscillation. In this paper we give an analytic treatment of the paramater degeneracies associated with measuring the nu(mu)-->nu(e) probability and its CP and/or T conjugates. For CP violation, we give explicit solutions to allow us to obtain the regions where there exist twofold and fourfold degeneracies. We calculate the fractional differences, (Deltatheta/(θ) over bar), between the allowed solutions which may be used to compare with the expected sensitivities of the experiments. For T violation we show that there is always a complete degeneracy between solutions with positive and negative Deltam(13)(2) which arises due to a symmetry and cannot be removed by observing one neutrino oscillation probability and its T conjugate. Thus there is always a fourfold parameter degeneracy apart from exceptional points. Explicit solutions are also given and the fractional differences are computed. The biprobability CP/T trajectory diagrams are extensively used to illuminate the nature of the degeneracies.
Resumo:
The back-to-back correlations (BBC) of particle-antiparticle pairs, signalling in-medium mass modification, are studied in a finite size thermalized medium. The width of BBC function is explicitly evaluated in the case of a nonrelativistic spherically symmetric expanding fireball. The effect of the flow is to reduce the BBC signal as compared to the case of non flow. Nevertheless, a significant signal survives finite-time emission plus expansion effects.
Resumo:
We present calculations for a nonplanar double box with four massless, massive external, and internal legs propagators. The results are expressed for arbitrary exponents of propagators and dimension in terms of Lauricella's hypergeometric functions of three variables and hypergeometric-like multiple series.
Resumo:
Inspired in recent works of Biedenham [1, 2] on the realization of the q-algebra su(q)(2), We show in this note that the condition [2j + 1](q) = N-q(j) = integer, implies the discretization of the deformation parameter alpha, where q = e(alpha). This discretization replaces the continuum associated to ct by an infinite sequence alpha(1), alpha(2), alpha(3),..., obtained for the values of j, which label the irreps of su(q)(2). The algebraic properties of N-q(j) are discussed in some detail, including its role as a trace, which conducts to the Clebsch-Gordan series for the direct product of irreps. The consequences of this process of discretization are discussed and its possible applications are pointed out. Although not a necessary one, the present prescription is valuable due to its algebraic simplicity especially in the regime of appreciable values of alpha.
Resumo:
We consider a four-parameter family of point interactions in one dimension. This family is a generalization of the usual delta-function potential. We examine a system consisting of many particles of equal masses that are interacting pairwise through such a generalized point interaction. We follow McGuire who obtained exact solutions for the system when the interaction is the delta-function potential. We find exact bound states with the four-parameter family. For the scattering problem, however, we have not been so successful. This is because, as we point out, the condition of no diffraction that is crucial in McGuire's method is nor satisfied except when the four-parameter family is essentially reduced to the delta-function potential.
Resumo:
We study the expansion of a Bose-Einstein condensate trapped in a combined optical-lattice and axially-symmetric harmonic potential using the numerical solution of the mean-field Gross-Pitaevskii equation. First, we consider the expansion of such a condensate under the action of the optical-lattice potential alone. In this case the result of numerical simulation for the axial and radial sizes during expansion is in agreement with two experiments by Morsch et al (2002 Phys. Rev. A 66 021601(R) and 2003 Laser Phys. 13 594). Finally, we consider the expansion under the action of the harmonic potential alone. In this case the oscillation, and the disappearance and revival of the resultant interference pattern is in agreement with the experiment by Muller et al (2003 J. Opt. B: Quantum Semiclass. Opt. 5 S38).
Resumo:
By incorporating the holographic principle in a time-depending Lambda-term cosmology, new physical bounds on the arbitrary parameters of the model can be obtained. Considering then the dark energy as a purely geometric entity, for which no equation of state has to be introduced, it is shown that the resulting range of allowed values for the parameters may explain both the coincidence problem and the universe accelerated expansion, without resorting to any kind of additional structures. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
We use a time-dependent dynamical mean-field-hydrodynamic model to study the formation of fermionic dark solitons in a trapped degenerate Fermi gas mixed with a Bose-Einstein condensate in a harmonic as well as a periodic optical-lattice potential. The dark soliton with a 'notch' in the probability density with a zero at the minimum is simulated numerically as a nonlinear continuation of the first vibrational excitation of the linear mean-field-hydrodynamic equations, as suggested recently for pure bosons. We study the free expansion of these dark solitons as well as the consequent increase in the size of their central notch and discuss the possibility of experimental observation of the notch after free expansion.
Resumo:
We measure the dimuon charge asymmetry A in p (p) over bar collisions at a center of mass energy root s=1960 GeV. The data was recorded with the D0 detector and corresponds to an integrated luminosity of approximately 1.0 fb(-1). Assuming that the asymmetry A is due to asymmetric B-0 <->(B) over bar (0) mixing and decay, we extract the CP-violation parameter of B-0 mixing and decay: ((epsilon B0))/(1+vertical bar epsilon B0 vertical bar 2)=(AB0)/(4)= -0.0023 +/- 0.0011(stat)+/- 0.0008(syst).A(B)(0) is the dimuon charge asymmetry from decays of B-0(B) over bar (0) pairs. The general case, with CP violation in both B-0 and B-s(0) systems, is also considered. Finally we obtain the forward-backward asymmetry that quantifies the tendency of mu(+) to go in the proton direction and mu(-) to go in the antiproton direction. The results are consistent with the standard model and constrain new physics.
Resumo:
There is a well-developed framework, the Black-Scholes theory, for the pricing of contracts based on the future prices of certain assets, called options. This theory assumes that the probability distribution of the returns of the underlying asset is a Gaussian distribution. However, it is observed in the market that this hypothesis is flawed, leading to the introduction of a fudge factor, the so-called volatility smile. Therefore, it would be interesting to explore extensions of the Black-Scholes theory to non-Gaussian distributions. In this paper, we provide an explicit formula for the price of an option when the distributions of the returns of the underlying asset is parametrized by an Edgeworth expansion, which allows for the introduction of higher independent moments of the probability distribution, namely skewness and kurtosis. We test our formula with options in the Brazilian and American markets, showing that the volatility smile can be reduced. We also check whether our approach leads to more efficient hedging strategies of these instruments. (C) 2004 Elsevier B.V. All rights reserved.