926 resultados para Pancreatic Elastase


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Standard indirect immunocytochemical techniques have been interfaced with confocal scanning laser microscopy (for whole-mount preparations) and epifluorescence microscopy (for cryosections) to investigate the occurrence and distribution of serotoninergic and peptidergic nerve elements in adult H. diminuta. Serotonin (5-HT)-immunoreactivity (IR) was widespread throughout the worm, occurring in the paired cerebral ganglia, transverse commissure, the 10 longitudinal nerve cords and in a plethora of small nerve fibres of the peripheral nervous system. An abundance of serotoninergic nerve cell bodies was found in association with the lateral nerve cords. The genital atrium and accessory reproductive ducts were richly innervated with serotoninergic nerve fibres. Thirty-five antisera to 20 vertebrate regulatory peptides and 1 invertebrate peptide (FMRFamide) were used to screen the worm for neuropeptide IR. Immunostaining was obtained with antisera raised to pancreatic polypeptide (PP), peptide YY (PYY), neuropeptide Y (NPY), substance P (SP), peptide histidine isoleucine (PHI), xenopsin (XP) and FMRFamide. The most extensive pattern of IR occurred with antisera to PP and PYY, IR being evident in the cerebral ganglia, transverse commissure, longitudinal nerve cords and in small nerve fibres that ramified throughout the parenchyma. A series of bipolar nerve cell bodies between the median nerve cords displayed PP/PYY-IR. The distribution of FMRFamide-IR was reminiscent of the PP/PYY pattern but was less extensive. Comparison of the serotoninergic and peptidergic nervous systems has revealed general similarities and some distinct differences, especially with regard to the distribution of immunoreactive nerve cell bodies. Quantitative data are presented on the levels of PP-, SP-, PHI-, and gastrin-releasing peptide (GRP)-immunoreactivities demonstrable in acid-alcohol extracts of whole worms. The highest level of peptide IR determined was recorded for PP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using a C-terminally directed pancreatic polypeptide (PP) antiserum and immunocytochemical methods, PP-immunoreactivity (IR) was localized throughout the central (CNS) and peripheral nervous systems (PNS) of the cestode, Moniezia expansa. In the CNS, immunostaining was evident in the paired cerebral ganglia (primitive brain), connecting commissure, and the paired longitudinal nerve cords that are cross-linked by numerous regular transverse connectives. The PNS was seen to consist of a fine anastomosing nerve-net of immunoreactive fibres, many of which were closely associated with reproductive structures. Radioimmunoassay of this peptide IR in acid-alcohol extracts of the worm measured 192.8 ng/g of PP-IR. HPLC analyses of the M. expansa PP-IR identified a single molecular form which was purified to homogeneity. Plasma desorption mass spectrometry (PDMS) of purified parasite peptide resolved a single peptide with a molecular mass of 4599 +/- 10 Da. Automated gas-phase Edman degradation identified a 39-amino acid peptide with a C-terminal phenylalaninamide. Examination of its primary structure shows that it displays significant sequence homology with the vertebrate neuropeptide Y superfamily, suggesting that this platyhelminth-derived peptide is the phylogenetic precursor. Neuropeptide F (M. expansa) is the first regulatory peptide to be fully sequenced from the phylum Platyhelminthes and may represent a member of an important new class of invertebrate neuropeptide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Standard enzyme cytochemical and indirect immunocytochemical techniques have been used in conjunction with light and confocal scanning laser microscopy (CSLM) to visualize cholinergic, serotoninergic and peptidergic nerve elements in whole-mount preparations of the amphibian urinary-bladder fluke, Gorgoderina vitelliloba. Cholinesterase (ChE) activity was localized in paired anterior ganglia, a connecting dorsal commissure and in the origins of the ventral nerve cords. Cholinergic ganglia were also evident in shelled embryos in the uterus. Serotonin-immunoreactivity (IR) was more extensive than ChE activity and was identified in both the central and peripheral nervous systems. Serotoninergic nerve fibres were associated with the somatic musculature and female reproductive ducts. Antisera to nine mammalian peptides and one invertebrate (FMRFamide) peptide have been used to investigate the peptidergic nervous system in the parasite. Immunoreactivity was obtained to five peptides, namely pancreatic polypeptide (PP), peptide YY (PYY), neuropeptide Y (NPY), substance P (SP) and FMRFamide. Peptidergic nerve fibres were found to be more abundant than demonstrable cholinergic or serotoninergic nerve fibres. NPY-IR was identified only in the main components of the central nervous system. However, PP- and PYY-IR occurred in the anterior ganglia, dorsal commissure, main nerve cords and in numerous small varicose fibres that ramified throughout the worm. Additionally, PP-immunoreactive nerve fibres were found to innervate the musculature of the female reproductive tracts. Six sites of IR were found in the acetabulum, using antisera directed towards the C-terminal end of PP and PYY, and these matched with the distribution of six non-ciliated rosette-like papillae observed by scanning electron microscopy. SP- and FMRFamide-IR were identified in the CNS, and FMRFamide-immunopositive nerve fibres were also evident in association with the gonopore/cirrus region and with the terminal excretory pore. Results are discussed with respect to possible roles for each of the neurochemical types.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Parasitic worms come from two very different phyla-Platyhelminthes (flatworms) and Nematoda (roundworms). Although both phyla possess nervous systems with highly developed peptidergic components. there are key differences in the structure and action of native neuropeptides in the two groups. For example, the most abundant neuropeptide known in platyhelminths is the pancreatic polypeptide-like neuropeptide F, whereas the most prevalent neuropeptides in nematodes an FMRFamide-related peptides (FaRPs), which are also present in platyhelminths. With respect to neuropeptide diversity, platyhelminth species possess only one or two distinct FaRPs, whereas nematodes have upwards of 50 unique FaRPs. FaRP bioactivity in platyhelminths appears to be restricted to myoexcitation, whereas both excitatory and inhibitory effects have been reported in nematodes. Recently interest has focused on the peptidergic signaling systems of both phyla because elucidation of these systems will do much to clarify the basic biology of the worms and because the peptidergic systems hold the promise of yielding novel targets for a new generation of antiparasitic drugs. (C) 1999 Elsevier Science Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Available primary structural information suggests that the FMRFamide-related peptides (FaRPs) from parasitic and free-living nematodes are different, and that free-living forms may not represent appropriate models for the study of the neurochemistry of parasitic forms in the laboratory. However, here we report the isolation and unequivocal identification of AF2 (originally isolated from the parasite, Ascaris suum) from acidified alcoholic extracts of the free-living species, Panagrellus redivivus. While reverse-phase HPLC analysis of extracts revealed FMRFamide-immunoreactivity to be highly heterogeneous, AF2 was the predominant FMRFamide-immunoreactive peptide present (at least 26 pmol/g wet weight of worms). This peptide was also the major immunoreactant identified by an antiserum raised to the conserved C-terminal hexapeptide amide of mammalian pancreatic polypeptide (PP), which has been used previously to isolate neuropeptide F (NPF). These observations were confirmed by radioimmunoassay and chromatographic fractionation of an acidified alcoholic extract of A. suum heads. The FMRFamide-related peptides present in a nematode extract may be highly dependent on the extraction medium employed, and these data would suggest that this complement of neuropeptides may not be as different between parasitic and free-living nematodes as initial studies have suggested. Finally, all of the evidence suggests that NPF is not present in nematodes and that the PP-immunoreactant previously demonstrated immunochemically is probably AF2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using an indirect immunofluorescence technique interfaced with confocal scanning laser microscopy, whole-mount preparations of three genera of marine trematode larvae, Cryntocotyle lingua, Cercaria emasculans and Himasthla leptosoma, were screened for 5-hydroxytryptamine (5-HT) and selected neuropeptide immunoreactivities (IRs). IRs for pancreatic polypeptide (PP), peptide YY (PYY) and FMRFamide were found in the central nervous systems of the three species of cercariae, immunostaining the paired ganglia and central commissure and the longitudinal nerve cords, with slight differences in both distribution and intensity of IRs being observed for the different antisera used. PP, PYY and FMRFamide IRs were evident in both central and peripheral components of the nervous system in the rediae of C. lingua. 5-HT IR was confined to the peripheral nervous systems of the cercariae of C. emasculans and the rediae of C. lingua, appearing in the form of a network of immunoreactive fibres and associated large cell bodies. A moderate substance P IR was observed in the nervous system of the cercariae of C. lingua. The patterns of immunostaining described were compared with those obtained using antiserum directed to the C-terminal decapeptide amide of neuropeptide F (NPF), a native parasitic peptide from the cestode Moniezia expansa. Results demonstrated that serotoninergic and peptidergic components were present in the nervous systems of all of the trematode larvae studied and that some, if not all, of the IR for PP. PYY and FMRFamide was due to the presence of a trematode NPF homologue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Whole mounts of the metacercariae of Diplostomum sp. and Cotylurus erraticus from rainbow trout have been treated cytochemically for the demonstration of cholinergic, serotoninergic (5-hydroxytryptamine) and peptidergic elements in the nervous system. Antisera directed against four vertebrate (pancreatic polypeptide, peptide YY, substance P and peptide histidine isoleucine) and two invertebrate peptides (neuropeptide F and FMRFamide) were used in an indirect immunofluorescence procedure in conjunction with confocal scanning laser microscopy (CSLM). Of the seven antisera tested, all except peptide histidine isoleucine showed significant immunoreactivity. Cholinergic and serotoninergic staining was found primarily in the central nervous system (CNS) and in cell bodies associated with the ventral and dorsal nerve cords in both trematodes. Peptidergic immunoreactivity was localised in the CNS and PNS of both genera, revealing an extensive innervation within the holdfast organ and in and around the oral and ventral suckers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Immunocytochemical techniques used in conjunction with confocal scanning laser microscopy (CSLM) and electron microscopy have been used to demonstrate, for the first time, the distribution of the parasitic platyhelminth neuropeptide, neuropeptide F (NPF) in the cestode, Moniezia expansa. Antisera were raised to intact NPF(1-39) and to the C-terminal decapeptide of NPF(30-39). These antisera were characterized and validated for use in both immunocytochemistry and radioimmunoassay (RIA). NPF immunoreactivity (IR) was detected using both antisera throughout all of the major components of the central and peripheral nervous systems of the worm. The pattern of NPF-IR was found to mirror the IR obtained using a C-terminally directed pancreatic polypeptide (PP) antiserum and FMRFamide antisera; blocking studies using these antisera revealed that FMRFamide and PP antisera cross-react with NPF(M. expansa). RIA of acid-alcohol extracts of the worm measured 114 ng/g using the C-terminal NPF antiserum and 56 ng/g using the whole-molecule-directed antiserum. While the C-terminally-directed NPF antiserum cross-reacts with NPF-related peptides from other invertebrates, the whole-molecule-directed NPF antiserum is specific for NPF(M. expansa). The C-terminal NPF antiserum has potential for use in the identification and purification of NPF analogues from other platyhelminth parasites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The localisation and distribution of neuropeptide F (NPF)-immunoreactivity (IR) in the monogenean fish-gill parasite, Diclidophora merlangi, have been investigated by whole-mount immunocytochemistry interfaced with confocal scanning laser microscopy and, at the ultrastructural level, by indirect immunogold labeling. Using antisera directed to intact synthetic NPF (Moniezia expansa, residues 1-39) or to the C-terminal decapeptide (residues 30-39) of synthetic NPF (M. expansa), immunostaining was found throughout the central (CNS) and peripheral nervous systems (PNS), including the innervation of the reproductive system. Immunoreactivity was found to be more intense using the antiserum to the C-terminal decapeptide fragment of NPF. At the subcellular level, gold labeling of NPF-IR was found exclusively over the contents of dense-cored vesicles that occupied nerve axons of both the CNS and the PNS. The distribution pattern of immunostaining for NPF mirrored exactly that previously documented for the vertebrate pancreatic polypeptide (PP) family of peptides and for FMRFamide. This finding and the results of preabsorption experiments strongly suggest that NPF is the predominant native neuropeptide in D. merlangi and that it accounts for most of the immunostaining previously obtained with PP and FMRFamide antisera.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The localization and distribution of cholinergic, serotoninergic and peptidergic nerve elements in the proteocephalidean tapeworm, Proteocephalus pollanicola, have been investigated by enzyme histochemistry, and by an indirect immunofluorescence technique interfaced with confocal scanning laser microscopy. Cholinesterase (ChE) activity was localized in the major components of the central nervous system (CNS) and the peripheral nervous system (PNS), including the innervation of the reproductive structures of the worm. Serotoninergic (5-HT) nerves were found in the paired cerebral ganglia, transverse commissure and in the 10 longitudinal nerve cords. Antisera to 17 mammalian regulatory peptides and the invertebrate peptide FMRFamide have been used to explore the peptidergic nervous system of the worm. The most extensive immunostaining occurred with antisera raised to members of the neuropeptide Y superfamily, namely neuropeptide Y (NPY), peptide YY (PYY) and pancreatic polypeptide (PP). In all cases, intense immunoreactivity was found in numerous cell bodies and fibres of both the CNS and PNS, including the innervation of the reproductive apparatus. FMRFamide antisera stained the same structures to a comparable degree as those raised to the NPY superfamily. Cholinergic and peptidergic elements were much more prevalent within the CNS, while the serotoninergic nerve fibres tended to dominate in the PNS. The overlap obtained in staining patterns for the peptidergic and cholinergic components suggests that there may be a certain amount of co-localization of peptides with small-molecule transmitter substances in the same neurone. Weak staining for the tachykinin, substance P and for calcitonin gene-related peptide(CGRP) was confined to the major longitudinal nerve cords.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fasting and post-prandial circulating levels of insulin, gastrin, gastric inhibitory polypeptide, pancreatic polypeptide and neurotensin were measured in patients with flatulent dyspepsia, with and without gallbladder disease and post-cholecystectomy. Levels were also measured in non-dyspeptic patients with gallbladder disease and normal controls. There were no consistent significant differences from controls for fasting and post-prandial responses in patients with a history of dyspepsia or those who experienced dyspepsia at the time of the test. In patients with gallbladder disease, with and without dyspepsia, there was a reduced neurotensin response compared to normal controls. It is concluded that circulating levels of these hormones are not related to symptoms of flatulent dyspepsia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to evaluate the safety and effect on clinical outcomes and biomarkers of inflammation and tissue damage of the neutrophil elastase inhibitor AZD9668 (60 mg twice daily orally for 4 weeks) in cystic fibrosis. This was a randomised, double-blind, placebo-controlled study. Primary outcome measures were sputum neutrophil count, lung function, 24-h sputum weight, BronkoTest® diary card data and health-related quality-of-life (revised cystic fibrosis quality-of-life questionnaire). Secondary end-points included sputum neutrophil elastase activity, inflammatory biomarkers in sputum and blood, urine and plasma desmosine (an elastin degradation marker), AZD9668 levels and safety parameters (adverse events, routine haematology, biochemistry, electrocardiogram and sputum bacteriology). 56 patients were randomised, of which 27 received AZD9668. There was no effect for AZD9668 on sputum neutrophil counts, neutrophil elastase activity, lung function or clinical outcomes, including quality of life. In the AZD9668 group, there was a trend towards reduction in sputum inflammatory biomarkers with statistically significant changes in interleukin-6, RANTES and urinary desmosine. The pattern of adverse events was similar between groups. Consistent reductions in sputum inflammatory biomarkers were seen in the AZD9668 group, and reduction in urinary desmosine suggests that AZD9668 impacts elastin cleavage by neutrophil elastase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Elafin is a 6-kDa innate immune protein present at several epithelial surfaces including the pulmonary epithelium. It is a canonical protease inhibitor of two neutrophil serine proteases [neutrophil elastase (NE) and proteinase 3] with the capacity to covalently bind extracellular matrix proteins by transglutamination. In addition to these properties, elafin also possesses antimicrobial and immunomodulatory activities. The aim of the present study was to investigate the effect of Pseudomonas aeruginosa proteases on elafin function. We found that P aeruginosa PAO1-conditioned medium and two purified Pseudomonas metalloproteases, pseudolysin (elastase) and aeruginolysin (alkaline protease), are able to cleave recombinant elafin. Pseudolysin was shown to inactivate the anti-NE activity of elafin by cleaving its protease-binding loop. Interestingly, antibacterial properties of elafin against PAO1 were found to be unaffected after pseudolysin treatment. In contrast to pseudolysin, aeruginolysin failed to inactivate the inhibitory properties of elafin against NE. Aeruginolysin cleaves elafin at the amino-terminal Lys6-Gly7 peptide bond, resulting in a decreased ability to covalently bind purified fibronectin following transglutaminase activity. In conclusion, this study provides evidence that elafin is susceptible to proteolytic cleavage at alternative sites by P aeruginosa metalloproteinases, which can affect different biological functions of elafin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:


RATIONALE:
We hypothesise that elafin levels in acute lung injury (ALI) decrease over time due, in part, to proteolytic degradation as observed in other lung diseases.
OBJECTIVES:
The aim of this study was to characterise temporal changes in elafin concentration in patients with ALI and to evaluate whether a decrease in elafin levels is due to elevated protease activity.
METHODS:
Bronchoalveolar lavage fluid (BALF) was obtained from patients with ALI within 48 h of onset of ALI (day 0), at day 3 and at day 7. Elafin levels were quantified by ELISA. Elafin susceptibility to proteolytic cleavage by ALI BALF was assessed by Western blot and by high-performance liquid chromatography-mass spectrometry.
MEASUREMENTS AND MAIN RESULTS:
Elafin levels were found to be significantly increased at the onset of ALI compared with healthy volunteers and fell significantly by day 7 compared with day 0. In contrast, levels of secretory leukocyte protease inhibitor did not decrease over time. This decrease in elafin was due to cleavage by the 20S proteasome which was significantly increased in ALI BALF. Incubation of ALI BALF with the proteasome inhibitor epoxomicin confirmed that 20S proteasome protease activity was responsible for proteolytic cleavage of elafin, resulting in diminished anti-elastase activity. In addition, free neutrophil elastase activity significantly increased in ALI BALF from day 0 to day 7.
CONCLUSIONS:
Elafin concentrations fall within the pulmonary compartment over the course of ALI as a result of proteolytic degradation. This loss of elafin may predispose people, in part, to excessive inflammation in ALI.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we investigate the skin secretion of the Madagascan Tomato Frog, Dyscophus guineti, which is characterized by its peculiarly adhesive and viscous nature, with a view toward the function of the member of the Kunitz/bovine pancreatic trypsin inhibitor family (BPTI) it is known to contain. Using “shotgun” cloning of a skin secretion-derived cDNA library, we obtained the full-length sequence of the respective precursor that encodes this trypsin inhibitor. Furthermore, we demonstrated that this enzyme has inhibitory activity against trypsin, but not against thrombin, and also has no antimicrobial activity. Moreover, we confirm that it appears to be the only bioactive peptide in the skin secretion of this species. Using these observations, we attempt to posit a role for this inhibitor. In particular, we hypothesize that the trypsin inhibitor in D. guineti (and possibly other microhylid frogs) maintains the soluble state of the skin secretion during storage in the glands. Upon discharge of the secretion, the trypsin inhibitor, which occurs in low concentrations, can no longer prevent the polymerisation process of other yet unidentified skin proteins, thereby resulting in the conversion of the secretion to its final glue-like state. Thus, the major defensive value of the skin secretion appears to be mechanical, impeding ingestion through a combination of adhesion and the body inflation typical for some microhylid frogs rather than chemical through antimicrobial activity or toxicity.