869 resultados para PROTEINASE-ACTIVATED RECEPTOR-2
Resumo:
To determine the mechanism of the cardiac dilatation and reduced contractility of obese Zucker Diabetic Fatty rats, myocardial triacylglycerol (TG) was assayed chemically and morphologically. TG was high because of underexpression of fatty acid oxidative enzymes and their transcription factor, peroxisome proliferator-activated receptor-α. Levels of ceramide, a mediator of apoptosis, were 2–3 times those of controls and inducible nitric oxide synthase levels were 4 times greater than normal. Myocardial DNA laddering, an index of apoptosis, reached 20 times the normal level. Troglitazone therapy lowered myocardial TG and ceramide and completely prevented DNA laddering and loss of cardiac function. In this paper, we conclude that cardiac dysfunction in obesity is caused by lipoapoptosis and is prevented by reducing cardiac lipids.
Resumo:
Hepatotropism is a prominent feature of hepatitis B virus (HBV) infection. Cell lines of nonhepatic origin do not independently support HBV replication. Here, we show that the nuclear hormone receptors, hepatocyte nuclear factor 4 and retinoid X receptor α plus peroxisome proliferator-activated receptor α, support HBV replication in nonhepatic cells by controlling pregenomic RNA synthesis, indicating these liver-enriched transcription factors control a unique molecular switch restricting viral tropism. In contrast, hepatocyte nuclear factor 3 antagonizes nuclear hormone receptor-mediated viral replication, demonstrating distinct regulatory roles for these liver-enriched transcription factors.
Resumo:
Retinoid dysregulation may be an important factor in the etiology of schizophrenia. This hypothesis is supported by three independent lines of evidence that triangulate on retinoid involvement in schizophrenia: (i) congenital anomalies similar to those caused by retinoid dysfunction are found in schizophrenics and their relatives; (ii) those loci that have been suggestively linked to schizophrenia are also the loci of the genes of the retinoid cascade (convergent loci); and (iii) the transcriptional activation of the dopamine D2 receptor and numerous schizophrenia candidate genes is regulated by retinoic acid. These findings suggest a close causal relationship between retinoids and the underlying pathophysiological defects in schizophrenia. This leads to specific strategies for linkage analyses in schizophrenia. In view of the heterodimeric nature of the retinoid nuclear receptor transcription factors, e.g., retinoid X receptor β at chromosome 6p21.3 and retinoic acid receptor β at 3p24.3, two-locus linkage models incorporating genes of the retinoid cascade and their heterodimeric partners, e.g., peroxisome proliferator-activated receptor α at chromosome 22q12-q13 or nuclear-related receptor 1 at chromosome 2q22-q23, are proposed. New treatment modalities using retinoid analogs to alter the downstream expression of the dopamine receptors and other genes that are targets of retinoid regulation, and that are thought to be involved in schizophrenia, are suggested.
Resumo:
Peroxisome proliferators induce stearoyl-CoA desaturase activity (EC 1.14.99.5) in liver [Kawashima, Y., Hanioka, N., Matsumura, M. & Kozuka, H. (1983) Biochim. Biophys. Acta 752, 259-264]. We analyzed the changes in stearoyl-CoA desaturase 1 (SCD1) mRNA to further define the molecular mechanism for the induction of stearoyl-CoA desaturase by peroxisome proliferators. SCD1 mRNA was analyzed from the livers of BALB/c mice that had been fed diets supplemented with clofibrate or gemfibrozil. Clofibrate was found to induce liver SCD1 mRNA levels 3-fold within 6 hr to a maximum of 22-fold in 30 hr. Gemfibrozil administration resulted in a similar induction pattern. This induction is primarily due to an increase in transcription of the SCD1 gene, as shown by nuclear run-on transcription assays and DNA deletion analysis of transfected SCD1-chloramphenicol acetyltransferase fusion genes. The cis-linked response element for peroxisome proliferator-activated receptor (PPAR) was localized to an AGGTCA consensus sequence between base pairs -664 to -642 of the SCD1 promoter. Clofibrate-mediated induction of SCD1 mRNA was shown to be independent of polyunsaturated fatty acids, with peroxisome proliferators and arachidonic acid having opposite effects on SCD1 mRNA levels. Additionally, the activation of SCD1 mRNA by clofibrate was inhibited 77% by cycloheximide administration. Levels of liver beta-actin and albumin mRNAs were unchanged by these dietary manipulations. Our data show that hepatic SCD1 gene expression is regulated by PPARs and suggest that peroxisome proliferators and poly-unsaturated fatty acids act through distinct mechanisms.
Resumo:
Tumor necrosis factor (TNF) receptor-associated factor (TRAF) proteins associate with and transduce signals from TNF receptor 2, CD40, and presumably other members of the TNF receptor superfamily. TRAF2 is required for CD40- and TNF-mediated activation of the transcription factor NF-kappa B. Here we describe the isolation and characterization of a novel TRAF-interacting protein, I-TRAF, that binds to the conserved TRAF-C domain of the three known TRAFs. Overexpression of I-TRAF inhibits TRAF2-mediated NF-kappa B activation signaled by CD40 and both TNF receptors. Thus, I-TRAF appears as a natural regulator of TRAF function that may act by maintaining TRAFs in a latent state.
Resumo:
Lack of leptin (ob) protein causes obesity in mice. The leptin gene product is important for normal regulation of appetite and metabolic rate and is produced exclusively by adipocytes. Leptin mRNA was induced during the adipose conversion of 3T3-L1 cells, which are useful for studying adipocyte differentiation and function under controlled conditions. We studied leptin regulation by antidiabetic thiazolidinedione compounds, which are ligands for the adipocyte-specific nuclear receptor peroxisome proliferator-activated receptor gamma (PPARgamma) that regulates the transcription of other adipocyte-specific genes. Remarkably, leptin gene expression was dramatically repressed within a few hours after thiazolidinedione treatment. The ED50 for inhibition of leptin expression by the thiazolidinedione BRL49653 was between 5 and 50 nM, similar to its Kd for binding to PPARgamma. The relatively weak, nonthiazolidinedione PPAR activator WY 14,643 also inhibited leptin expression, but was approximately 1000 times less potent than BRL49653. These results indicate that antidiabetic thiazolidinediones down-regulate leptin gene expression with potencies that correlate with their abilities to bind and activate PPARgamma.
Resumo:
Nerve growth cones isolated from fetal rat brain are highly enriched in a 97-kDa glycoprotein, termed beta gc, that comigrates with the beta subunit of the IGF-I receptor upon two-dimensional PAGE and is disulfide-linked to this receptor's alpha subunit. Antibodies prepared to a conserved domain shared by the insulin and IGF-I receptor beta subunits (AbP2) or to beta gc were used to study receptor distribution further. Subcellular fractionation of the fetal brain segregated most AbP2 immunoreactivity away from growth cones, whereas most beta gc immunoreactivity copurified with growth cones. Experiments involving ligand-activated receptor autophosphorylation confirmed the concentration of IGF-I but not of insulin receptors in growth cone fractions. These results indicate the enrichment of IGF-I receptors in (presumably axonal) growth cones of the differentiating neuron. Furthermore, the segregation of beta gc from AbP2 immunoreactivity suggests that such neurons express an immunochemically distinct variant of the IGF-I receptor beta subunit at the growth cone.
Resumo:
A doença hepática gordurosa não-alcoólica (NAFLD, do inglês) é a manifestação clínica hepática da síndrome metabólica, cuja incidência aumenta consideravelmente em todo o mundo. A NAFLD pode progredir para um estado de esteatohepatite não-alcoólica (NASH, do inglês), caracterizado por inflamação hepatocelular, com ou sem fibrose. Dados na literatura mostram que o coativador-1 alfa do receptor ativado por proliferadores de peroxissoma gama (PGC-1alfa), além de estar envolvido em diversos processos metabólicos, representa uma estratégia terapêutica promissora na modulação da inflamação. Neste projeto investigamos as alterações inflamatórias no fígado induzida por dieta hiperlipídica e o papel do PGC-1alfa nesse processo. Camundongos C57black/6 receberam dieta hiperlipídica contendo 30% de gordura por 10 semanas. O peso dos animais foi avaliado semanalmente. Após a eutanásia, o tecido adiposo intra-abdominal (retroperitoneal e periepididimal) foi coletado e pesado. Analisamos o perfil glicêmico e lipídico sérico e expressão de genes envolvidos no metabolismo glicêmico e lipídico. Avaliou-se também o aspecto histológico e a inflamação do tecido hepático por quantificação das citocinas IL-6, TNF-alfa e IL-1beta. A dieta rica em gordura conduziu a um aumento dos depósitos de gordura intra-abdominal, hiperglicemia e hiperlipidemia. Os animais também apresentavam esteatohepatite, com aumento de citocinas pró-inflamatórias e diminuição na expressão de PGC-1alfa no tecido hepático. O envolvimento do PGC-1alfa na produção de mediadores inflamatórios por hepatócitos foi avaliado em células HepG2 utilizando RNA de interferência (RNAi). O knockdown da expressão de PGC-1alfa causou aumento na expressão e liberação de IL-6 em hepatócitos via aumento na fosforilação de IkBalfa e consequente ativação do NFkB. Portanto, nossos dados mostram que o PGC-1alfa inibe a produção de mediadores inflamatórios (IL-6) em hepatócitos, e fornecem novas evidências das conexões existentes entre as vias metabólicas e imunes
Resumo:
Le cannabis produit de nombreux effets psychologiques et physiologiques sur le corps humain. Les molécules contenues dans cette plante, désignées comme « phytocannabinoïdes », activent un système endogène qu’on appelle le système endocannabinoïde (eCB). Les effets de la consommation de cannabis sur la vision ont déjà été décrits sans cependant de formulation sur les mécanismes sous-jacents. Ces résultats comportementaux suggèrent, malgré tout, la présence de ce système eCB dans le système visuel, et particulièrement dans la rétine. Cette thèse vise donc à caractériser l’expression, la localisation et le rôle du système eCB dans la rétine du singe vervet, une espèce animale ayant un système visuel semblable à celui de l’humain. Nous avons mis au point un protocole expérimental d’immunohistochimie décrit dans l’article apparaissant dans l’Annexe I que nous avons utilisé pour répondre à notre objectif principal. Dans une première série de quatre articles, nous avons ainsi caractérisé l’expression et la localisation de deux récepteurs eCBs reconnus, les récepteurs cannabinoïdes de type 1 (CB1R) et de type 2 (CB2R), et d’un 3e présumé récepteur aux cannabinoïdes, le récepteur GPR55. Dans l’article 1, nous avons démontré que CB1R et une enzyme clé de ce système, la fatty acid amide hydrolase (FAAH), sont exprimés dans les parties centrale et périphérique de la rétine, et abondamment présents dans la fovéa, une région où l’acuité visuelle est maximale. Dans l’article 2, nous avons localisé le CB2R dans des cellules gliales de la rétine : les cellules de Müller et nous avons proposé un modèle sur l’action de cette protéine dans la fonction rétinienne faisant appel à une cascade chimique impliquant les canaux potassiques. Dans l’article 3, nous avons observé le GPR55 exclusivement dans les bâtonnets qui sont responsables de la vision scotopique et nous avons soumis un deuxième modèle de fonctionnement de ce récepteur par le biais d'une modulation des canaux calciques et sodiques des bâtonnets. Vu que ces 3 récepteurs se retrouvent dans des cellules distinctes, nous avons suggéré leur rôle primordial dans l’analyse de l’information visuelle au niveau rétinien. Dans l’article 4, nous avons effectué une analyse comparative de l’expression du système eCB dans la rétine de souris, de toupayes (petits mammifères insectivores qui sont sont considérés comme l’étape intermédiaire entre les rongeurs et les primates) et de deux espèces de singe (le vervet et le rhésus). Ces résultats nous ont menés à présenter une hypothèse évolutionniste quant à l’apparition et à la fonction précise de ces récepteurs. Dans les articles subséquents, nous avons confirmé notre hypothèse sur le rôle spécifique de ces trois récepteurs par l’utilisation de l’électrorétinographie (ERG) après injection intravitréenne d’agonistes et d’antagonistes de ces récepteurs. Nous avons conclu sur leur influence indéniable dans le processus visuel rétinien chez le primate. Dans l’article 5, nous avons établi le protocole d’enregistrement ERG normalisé sur le singe vervet, et nous avons produit un atlas d’ondes ERG spécifique à cette espèce, selon les règles de l’International Society for Clinical Electrophysiology of Vision (ISCEV). Les patrons électrorétinographiques se sont avérés semblables à ceux de l’humain et ont confirmé la similarité entre ces deux espèces. Dans l’article 6, nous avons démontré que le blocage de CB1R ou CB2R entraine une modification de l’électrorétinogramme, tant au niveau photopique que scotopique, ce qui supporte l’implication de ces récepteurs dans la modulation des ondes de l’ERG. Finalement, dans l’article 7, nous avons confirmé le modèle neurochimique proposé dans l’article 3 pour expliquer le rôle fonctionnel de GPR55, en montrant que l’activation ou le blocage de ce récepteur, respectivement par un agoniste (lysophosphatidylglucoside, LPG) ou un antagoniste (CID16020046), entraine soit une augmentation ou une baisse significative de l’ERG scotopique seulement. Ces données, prises ensemble, démontrent que les récepteurs CB1R, CB2R et GPR55 sont exprimés dans des types cellulaires bien distincts de la rétine du singe et ont chacun un rôle spécifique. L’importance de notre travail se manifeste aussi par des applications cliniques en permettant le développement de cibles pharmacologiques potentielles dans le traitement des maladies de la rétine.
Resumo:
Background. Peroxisome proliferator-activated receptor gamma (PPARgamma) agonists. which are known to be critical factors in lipid metabolism, have also been reported to reduce proteinuria. The mechanism and its relevance to progressive nephropathy have not been determined. The aims of this study were to assess the direct effects of a PPARgamma agonist on tubular cell albumin uptake, proinflammatory and profibrotic markers of renal pathology, using an opossum kidney model of proximal tubular cells. Methods. Cells were exposed to pioglitazone (10 mumol/L) in the presence and absence of low-density lipoprotein (LDL) 100 mug/mL +/- exposure to albumin 1 mg/mL. Results were expressed relative to control (5 mmol/L glucose) conditions. Results. Pioglitazone caused a dose-dependent increase in tubular cell albumin uptake (P < 0.0001). Despite the increase in albumin reabsorption, no concurrent increase in inflammatory or profibrotic markers were observed. Exposure to LDL increased monocyte chemoattractant protein-1 (MCP-1) (P < 0.05) and transforming growth factor-beta1 (TGF-beta1) (P < 0.05) production. which were reversed in the presence of pioglitazone. LDL induced increases in MCP-1 and TGF-β1 were independent of nuclear factor-κB (NF-κB) transcriptional activity. In contrast. tubular exposure to albumin increased tubular protein uptake, in parallel with an increase in MCP-1 (P = 0.05): TGF-β1 (P < 0.02) and NF-kappaB transcriptional activity (P < 0.05). which were unaffected by concurrent exposure to pioglitazone. Conclusion. These findings suggest that dyslipidemia potentiates renal pathology through mechanisms that may be modified PPARγ activation independent of NF-κB transcriptional activitv. In contrast, tubular exposure to protein induces renal damage through NF-κB-dependent mechanisms that are Unaffected by PPARγ activation.
Skeletal muscle and nuclear hormone receptors: Implications for cardiovascular and metabolic disease
Resumo:
Skeletal muscle is a major mass peripheral tissue that accounts for similar to 40% of the total body mass and a major player in energy balance. It accounts for > 30% of energy expenditure, is the primary tissue of insulin stimulated glucose uptake, disposal, and storage. Furthermore, it influences metabolism via modulation of circulating and stored lipid (and cholesterol) flux. Lipid catabolism supplies up to 70% of the energy requirements for resting muscle. However, initial aerobic exercise utilizes stored muscle glycogen but as exercise continues, glucose and stored muscle triglycerides become important energy substrates. Endurance exercise increasingly depends on fatty acid oxidation (and lipid mobilization from other tissues). This underscores the importance of lipid and glucose utilization as an energy source in muscle. Consequently skeletal muscle has a significant role in insulin sensitivity, the blood lipid profile, and obesity. Moreover, caloric excess, obesity and physical inactivity lead to skeletal muscle insulin resistance, a risk factor for the development of type II diabetes. In this context skeletal muscle is an important therapeutic target in the battle against cardiovascular disease, the worlds most serious public health threat. Major risk factors for cardiovascular disease include dyslipidemia, hypertension, obesity, sedentary lifestyle, and diabetes. These risk factors are directly influenced by diet, metabolism and physical activity. Metabolism is largely regulated by nuclear hormone receptors which function as hormone regulated transcription factors that bind DNA and mediate the pathophysiological regulation of gene expression. Metabolism and activity, which directly influence cardiovascular disease risk factors, are primarily driven by skeletal muscle. Recently, many nuclear receptors expressed in skeletal muscle have been shown to improve glucose tolerance, insulin resistance, and dyslipidernia. Skeletal muscle and nuclear receptors are rapidly emerging as critical targets in the battle against cardiovascular disease risk factors. Understanding the function of nuclear receptors in skeletal muscle has enormous pharmacological utility for the treatment of cardiovascular disease. This review focuses on the molecular regulation of metabolism by nuclear receptors in skeletal muscle in the context of dyslipidemia and cardiovascular disease. (c) 2005 Published by Elsevier Ltd.
Resumo:
The intestinal absorption of the essential trace element iron and its mobilization from storage sites in the body are controlled by systemic signals that reflect tissue iron requirements. Recent advances have indicated that the liver-derived peptide hepcidin plays a central role in this process by repressing iron release from intestinal enterocytes, macrophages and other body cells. When iron requirements are increased, hepcidin levels decline and more iron enters the plasma. It has been proposed that the level of circulating diferric transferrin, which reflects tissue iron levels, acts as a signal to alter hepcidin expression. In the liver, the proteins HFE, transferrin receptor 2 and hemojuvelin may be involved in mediating this signal as disruption of each of these molecules decreases hepcidin expression. Patients carrying mutations in these molecules or in hepcidin itself develop systemic iron loading (or hemochromatosis) due to their inability to down regulate iron absorption. Hepcidin is also responsible for the decreased plasma iron or hypoferremia that accompanies inflammation and various chronic diseases as its expression is stimulated by pro-inflammatory cytokines such as interleukin 6. The mechanisms underlying the regulation of hepcidin expression and how it acts on cells to control iron release are key areas of ongoing research.
Resumo:
Orphan nuclear receptors: therapeutic opportunities in skeletal muscle. Am J Physiol Cell Physiol 291: C203-C217, 2006; doi: 10.1152/ajpcell. 00476.2005.-Nuclear hormone receptors (NRs) are ligand-dependent transcription factors that bind DNA and translate physiological signals into gene regulation. The therapeutic utility of NRs is underscored by the diversity of drugs created to manage dysfunctional hormone signaling in the context of reproductive biology, inflammation, dermatology, cancer, and metabolic disease. For example, drugs that target nuclear receptors generate over $10 billion in annual sales. Almost two decades ago, gene products were identified that belonged to the NR superfamily on the basis of DNA and protein sequence identity. However, the endogenous and synthetic small molecules that modulate their action were not known, and they were denoted orphan NRs. Many of the remaining orphan NRs are highly enriched in energy-demanding major mass tissues, including skeletal muscle, brown and white adipose, brain, liver, and kidney. This review focuses on recently adopted and orphan NR function in skeletal muscle, a tissue that accounts for similar to 35% of the total body mass and energy expenditure, and is a major site of fatty acid and glucose utilization. Moreover, this lean tissue is involved in cholesterol efflux and secretes that control energy expenditure and adiposity. Consequently, muscle has a significant role in insulin sensitivity, the blood lipid profile, and energy balance. Accordingly, skeletal muscle plays a considerable role in the progression of dyslipidemia, diabetes, and obesity. These are risk factors for cardiovascular disease, which is the the foremost cause of global mortality (> 16.7 million deaths in 2003). Therefore, it is not surprising that orphan NRs and skeletal muscle are emerging as therapeutic candidates in the battle against dyslipidemia, diabetes, obesity, and cardiovascular disease.
Resumo:
Long-term alcohol abuse by human subjects leads to selective brain damage that is restricted in extent and variable in severity. Within the cerebral cortex, neuronal loss is most marked in the superior frontal cortex and relatively mild in motor cortex. Cirrhotic alcoholics and subjects with alcohol-related Wernicke-Korsakoff syndrome show more severe and more extensive damage than do uncomplicated cases. Accumulating evidence suggests that the likelihood of developing alcohol dependency is associated with one or more genetic markers. In previous work we showed that GABAA receptor functionality, and the subunit isoform expression that underlies this, differed in region- and disease-specific ways between alcoholics and controls. By contrast, glutamate receptor (NMDA, KA, AMPA) differences were muted or absent. Here we asked if genotype differentiated the form, pharmacology, or expression of glutamate and GABA receptors in pathologically vulnerable and spared cortical regions, with a view to determining whether such subject factors might influence the severity of alcohol-induced brain damage. Cerebrocortical tissue was obtained at autopsy under informed, written consent from uncomplicated and alcoholic-cirrhotic Caucasian (predominantly Anglo-Celtic) cases, together with matched controls and cases with cirrhosis of non-alcoholic origin. All subjects had pathological confirmation of liver and brain diagnosis; none had been polydrug abusers. Samples were processed for synaptic membrane receptor binding, mRNA analysis by quantitative RT-PCR, and protein analysis by Western blot. Genotyping was performed by PCR methods, in the main using published primers. Several genetic markers differentiated between our alcoholic and control subjects, including the GABAA receptor 2 subunit (GABB2) gene ( 2 (3) 10.329, P 0.01), the dopamine D2 receptor B1 (DRD2B) allele ( 2 (3) 10.109, P 0.01) and a subset of the alcohol dehydrogenase-3 (ADH3) alleles ( 2 (2) 4.730, P 0.05). Although neither the type-2 glutamate transporter (EAAT2) nor the serotonin transporter (5HTT) genes were significantly associated with alcoholism, only EAAT2 heterozygotes showed a significant association between ADH3 genotype and alcoholism ( 2 (3) 7.475, P 0.05). Other interactions between genotypes were also observed. DRD2A, DRD2B, GABB2, EAAT2 and 5HTT genotypes did not divide alcoholic cases and controls on NMDA receptor parameters, although in combined subjects there was a significant DRD2B X Area Interaction with glutamateNMDA receptor efficacy (F(1,57) 4.67; P 0.05), measured as the extent of glutamate-enhanced MK801 binding. In contrast, there was a significant Case-group X ADH3 X Area Interaction with glutamateNMDA receptor efficacy (F(3,57) 2.97; P 0.05). When GABAA receptor subunit isoform expression was examined, significant Case-group X Genotype X Area X Isoform interactions were found for EAAT2 with subunit mRNA (F(1,37) 4.22; P0.05), for GABB2 with isoform protein (F(1,37) 5.69; P 0.05), and for DRD2B with isoform protein (F(2,34)5.69; P0.05). The results suggest that subjects’ genetic makeup may modulate the effectiveness of amino acid-mediated transmission in different cortical regions, and thereby influence neuronal vulnerability to excitotoxicity.