636 resultados para POLYACRYLAMIDE
Resumo:
The interaction of histone H1 isolated from chicken erythrocytes with restriction fragments from plasmids pBR322 and pUC19 was studied by gel electrophoresis. Certain restriction fragments exhibited unusually high affinity for the histone, forming high molecular mass complexes at protein to DNA ratios at which the other fragments did not show evidence for binding. The highly preferred fragments are intrinsically curved, as judged by their electrophoretic mobility in polyacrylamide gels, by computer modeling, and by imaging with scanning force microscopy. However, control experiments with either curved portions of the same fragments or highly curved kinetoplast DNA fragments showed that the presence of curvature alone was not sufficient for preferential binding. By using various restriction fragments centered around the highly preferred sequence, it was found that the high-affinity binding required in addition the presence of specific sequences on both sides of the region of curvature. Thus, both curvature and the presence of specific sites seem to be required to generate high affinity.
Resumo:
To analyze cotranslational folding of influenza hemagglutinin in the endoplasmic reticulum of live cells, we used short pulses of radiolabeling followed by immunoprecipitation and analysis with a two-dimensional SDS/polyacrylamide gel system which was nonreducing in the first dimension and reducing in the second. It separated nascent glycopolypeptides of different length and oxidation state. Evidence was obtained for cotranslational disulfide formation, generation of conformational epitopes, N-linked glycosylation, and oligosaccharide-dependent binding of calnexin, a membrane-bound chaperone that binds to incompletely folded glycoproteins via partially glucose-trimmed oligosaccharides. When glycosylation or oligosaccharide trimming was inhibited, the folding pathway was perturbed, suggesting a role for N-linked oligosaccharides and calnexin during translation of hemagglutinin.
Resumo:
Macronuclei of the ciliated protozoan Tetrahymena thermophila possess a histone acetyltransferase activity closely associated with transcription-related histone acetylation. Nothing definitive is known concerning the polypeptide composition of this activity in Tetrahymena or any comparable activity from any cellular source. An acetyltransferase activity gel assay was developed which identifies a catalytically active subunit of this enzyme in Tetrahymena. This activity gel assay detects a single polypeptide of 55 kDa (p55) in crude macronuclear extracts, as well as in column-purified fractions, which incorporates [3H]acetate from [3H]acetyl-CoA into core histone substrates polymerized directly into SDS polyacrylamide gels. p55 copurifies precisely with acetyltransferase activity through all chromatographic steps examined, including reverse-phase HPLC. Gel-filtration chromatography of this activity indicates a molecular mass of 220 kDa, suggesting that the native enzyme may consist of four identical subunits of 55 kDa. Furthermore, p55 is tightly associated with di- and greater polynucleosomes and therefore may be defined as a component of histone acetyltransferase type A--i.e., chromatin associated.
Resumo:
A typing method for bacteria was developed and applied to several species, including Escherichia coli and Actinobacillus actinomycetemcomitans. Total genomic DNA was digested with a restriction endonuclease, and fragments were enabled with [alpha-32P]dATP by using the Klenow fragment of DNA polymerase and separated by electrophoresis in 6% polyacrylamide/8 M urea (sequencing gel). Depending on the restriction endonuclease and the bacterium, the method produced approximately 30-50 well-separated fragments in the size range of 100-400 nucleotides. For A. actinomycetemcomitans, all strains had bands in common. Nevertheless, many polymorphisms could be observed, and the 31 strains tested could be classified into 29 distinct types. Furthermore, serotype-specific fragments could be assigned for the three serotypes investigated. The method described is very sensitive, allowing more distinct types to be distinguished than other commonly used typing methods. When the method was applied to 10 other clinically relevant bacterial species, both species-specific bands and strain-specific bands were found. Isolates from different locations of one patient showed indistinguishable patterns. Computer-assisted analysis of the DNA fingerprints allowed the determination of similarity coefficients. It is concluded that genomic fingerprinting by restriction fragment end labeling (RFEL) is a powerful and generally applicable technique to type bacterial species.
Resumo:
We report a general mass spectrometric approach for the rapid identification and characterization of proteins isolated by preparative two-dimensional polyacrylamide gel electrophoresis. This method possesses the inherent power to detect and structurally characterize covalent modifications. Absolute sensitivities of matrix-assisted laser desorption ionization and high-energy collision-induced dissociation tandem mass spectrometry are exploited to determine the mass and sequence of subpicomole sample quantities of tryptic peptides. These data permit mass matching and sequence homology searching of computerized peptide mass and protein sequence data bases for known proteins and design of oligonucleotide probes for cloning unknown proteins. We have identified 11 proteins in lysates of human A375 melanoma cells, including: alpha-enolase, cytokeratin, stathmin, protein disulfide isomerase, tropomyosin, Cu/Zn superoxide dismutase, nucleoside diphosphate kinase A, galaptin, and triosephosphate isomerase. We have characterized several posttranslational modifications and chemical modifications that may result from electrophoresis or subsequent sample processing steps. Detection of comigrating and covalently modified proteins illustrates the necessity of peptide sequencing and the advantages of tandem mass spectrometry to reliably and unambiguously establish the identity of each protein. This technology paves the way for studies of cell-type dependent gene expression and studies of large suites of cellular proteins with unprecedented speed and rigor to provide information complementary to the ongoing Human Genome Project.
Resumo:
Eukaryotic initiation factor 2B (eIF-2B) is an essential component of the pathway of peptide-chain initiation in mammalian cells, yet little is known about its molecular structure and regulation. To investigate the structure, regulation, and interactions of the individual subunits of eIF-2B, we have begun to clone, characterize, and express the corresponding cDNAs. We report here the cloning and characterization of a 1510-bp cDNA encoding the alpha subunit of eIF-2B from a rat brain cDNA library. The cDNA contains an open reading frame of 918 bp encoding a polypeptide of 305 aa with a predicted molecular mass of 33.7 kDa. This cDNA recognizes a single RNA species approximately 1.6 kb in length on Northern blots of RNA from rat liver. The predicted amino acid sequence contains regions identical to the sequences of peptides derived from bovine liver eIF-2B alpha subunit. Expression of this cDNA in vitro yields a peptide which comigrates with natural eIF-2B alpha in SDS/polyacrylamide gels. The predicted amino acid sequence exhibits 42% identity to that deduced for the Saccharomyces cerevisiae GCN3 protein, the smallest subunit of yeast eIF-2B. In addition, expression of the rat cDNA in yeast functionally complements a gcn3 deletion for the inability to induce histidine biosynthetic genes under the control of GCN4. These results strongly support the hypothesis that mammalian eIF-2 alpha and GCN3 are homologues. Southern blots indicate that the eIF-2B alpha cDNA also recognizes genomic DNA fragments from several other species, suggesting significant homology between the rat eIF-2B alpha gene and that from other species.
Resumo:
Ubiquitin-activating enzyme, E1, is the first enzyme in the pathway leading to formation of ubiquitin-protein conjugates. E1 exists as two isoforms in human cells which are separable by electrophoresis. These isoforms migrate with apparent molecular sizes of 110 kDa and 117 kDa in SDS/polyacrylamide gels. Immunoprecipitation of E1 from lysates of HeLa cells metabolically labeled with [32P]phosphate indicated the presence of a phosphorylated form of E1 which migrates at 117 kDa. Phospho amino acid analysis identified serine as the phosphorylated residue in E1. Phosphorylated E1 was also detected in normal and transformed cells from another human cell line. Phosphatase-catalyzed dephosphorylation of E1 in vitro did not eliminate the 117-kDa E1 isoform detected by Coomassie staining after SDS/polyacrylamide gel electrophoresis, thereby demonstrating that phosphorylation is not the sole structural feature differentiating the isoforms of E1. These observations suggest new hypotheses concerning mechanisms of metabolic regulation of the ubiquitin conjugation pathway.
Resumo:
Este trabalho descreve a síntese, caracterização e aplicação de sistemas poliméricos baseados em polímeros condutores em sistemas de liberação controlada de drogas. Esta tese pode ser dividida em duas partes: na primeira se apresentam os resultados da aplicação de filmes de polianilina e polipirrol na liberação de drogasmodelo como a dopamina protonada e o ácido salicílico. Na liberação de salicilato utilizou-se um filme polianilina eletrosintetizado e dopado com íons cloreto. Já para a liberação de dopamina protonada (um cátion) a liberação foi conduzida a partir de um sistema bicamadas, com um filme de polianilina recoberta com uma camada de Náfion. É mostrada a liberação controlada nos dois casos, porém também se discutem limitaçãoes deste tipo de sistema que levaram ao estudo de uma forma alternativa de controle eletroquímico utilizando polímeros condutores. A segunda parte do trabalho mostra então esta nova metodologia que se baseia em compósitos de poianilina eletropolimerizada no interior de hidrogéis de poliacrilamida. É mostrado que este novo material é eletroativo e mantém as características de intumescimento dos hidrogéis, tanto necessárias ao desenvolvimento destes sistemas de liberação controlada. Mecanismos para o crescimento e distribuição da polianilina na matriz isolante e para a atuação do compósito no controle eletroquímico da liberação são propostos com base nos dados de microscopia de força atômica, Raman e eletrônica de varredura, além de testes de liberação controlada com moléculas de diferentes cargas.
Resumo:
Once considered unique to the lung, surfactant proteins have been clearly identified in the intestine and peritoneum and are suggested to exist in several other organs. In the lung, surfactant proteins assist in the formation of a monolayer of surface-active phospholipid at the liquid-air interface of the alveolar lining, reducing the surface tension at this surface. In contrast, surface-active phospholipid adsorbed to articular surfaces has been identified as the load-bearing boundary lubricant of the joint. This raises the question of whether surfactant proteins in synovial fluid (SF) are required for the formation of the adsorbed layer in normal joints. Proteins from small volumes of equine SF were resolved by 1- and 2-dimensional polyacrylamide gel electrophoresis and detected by Western blotting to investigate the presence of surfactant proteins. The study showed that surfactant proteins A and D (SP-A and SP-D) are present in the SF of normal horses. We suggest that, like surface-active phospholipid, SP-A and SP-D play a significant role in the functioning of joints. Next will be clarification of the roles of surfactant proteins as disease markers in a variety of joint diseases, such as degenerative joint disease and inflammatory problems.
Resumo:
The intestinal spirochaete Brachyspira pilosicoli causes colitis in a wide variety of host species. Little is known about the structure or protein constituents of the B. pilosicoli outer membrane (OM). To identify surface-exposed proteins in this species, membrane vesicles were isolated from B. pilosicoli strain 95-1000 cells by osmotic lysis in dH(2)O followed by isopycnic centrifugation in sucrose density gradients. The membrane vesicles were separated into a high-density fraction (HDMV; p = 1.18 g CM-3) and a low-density fraction (LDMV; rho=1.12 g cm(-3)). Both fractions were free of flagella and soluble protein contamination. LDMV contained predominantly OM markers (lipo-oligosaccharide and a 29 kDa B. pilosicoli OM protein) and was used as a source of antigens to produce mAbs. Five B. pilosicoli-specific mAbs reacting with proteins with molecular masses of 23, 24, 35, 61 and 79 kDa were characterized. The 23 kDa protein was only partially soluble in Triton X-114, whereas the 24 and 35 kDa proteins were enriched in the detergent phase, implying that they were integral membrane proteins or lipoproteins. All three proteins were localized to the B. pilosicoli OM by immunogold labelling using specific mAbs. The gene encoding the abundant, surface-exposed 23 kDa protein was identified by screening a B. pilosicoli 95-1000 genome library with the mAb and was expressed in Escherichia coli. Sequence analysis showed that it encoded a unique lipoprotein, designated BmpC. Recombinant BmpC partitioned predominantly in the OM fraction of E. coli strain SOLR. The mAb to BmpC was used to screen a collection of 13 genetically heterogeneous strains of B. pilosicoli isolated from five different host species. Interestingly, only strain 95-1000 was reactive with the mAb, indicating that either the surface-exposed epitope on BmpC is variable between strains or that the protein is restricted in its distribution within B. pilosicoli.
Resumo:
Venom from the Australian elapid Pseudonaja textilis (Common or Eastern Brown snake), is the second most toxic snake venom known and is the most common cause of death from snake bite in Australia. This venom is known to contain a prothrombin activator complex, serine proteinase inhibitors, various phospholipase A(2)s, and pre-and postsynaptic neurotoxins. In this study, we performed a proteomic identification of the venom using two- dimensional gel electrophoresis, mass spectrometry, and de novo peptide sequencing. We identified most of the venom proteins including proteins previously not known to be present in the venom. In addition, we used immunoblotting and post-translational modification-specific enzyme stains and antibodies that reveal the complexity and regional diversity of the venom. Modifications observed include phosphorylation, gamma-carboxylation, and glycosylation. Glycoproteins were further characterized by enzymatic deglycosylation and by lectin binding specificity. The venom contains an abundance of glycoproteins with N-linked sugars that include glucose/mannose, N-acetylgalactosamine, N-acetylglucosamine, and sialic acids. Additionally there are multiple isoforms of mammalian coagulation factors that comprise a significant proportion of the venom. Indeed two of the identified proteins, a procoagulant and a plasmin inhibitor, are currently in development as human therapeutic agents.
Resumo:
This study examined the effect of iron deprivation and sub-inhibitory concentrations of antifungal agents on yeast cell surface antigen recognition by antibodies from patients with Candida infections. Separation of cell wall surface proteins by sodium dodecyl-polyacrylamide gel electrophoresis (SDS-PAGE) and immunological detection by immunoblotting, revealed that antigenic profiles of yeasts were profoundly influenced by the growth environment. Cells grown under iron-depleted conditions expressed several iron-regulated proteins that were recognized by antibodies from patient sera. An attempt to characterize these proteins by lectin blotting with concanavalin A revealed that some could be glycoprotein in nature. Furthermore, these proteins which were located within cell walls and on yeast surfaces, were barely or not expressed in yeasts cultivated under iron-sufficient conditions. The magnitude and heterogeneity of human antibody responses to these iron-regulated proteins were dependent on the type of Candida infection, serum antibody class and yeast strain. Hydroxamate-type siderophores were also detected in supernatants of iron depleted yeast cultures. This evidence suggests that Candida albicans expresses iron-regulated proteins/glycoproteins in vitro which may play a role in siderophore-mediated iron uptake in Candida albicans. Sequential monitoring of IgG antibodies directed against yeast surface antigens during immunization of rabbits revealed that different antigens were recognized particularly during early and later stages of immunization in iron-depleted cells compared to iron-sufficient cells. In vitro and in vivo adherence studies demonstrated that growth phase, yeast strain and growth conditions affect adhesion mechanisms. In particular, growth under iron-depletion in the presence of sub-inhibitory concentrations of polyene and azole antifungals enhanced the hydrophobicity of C.albicans. Growth conditions also influenced MICs of antifungals, notably that of ketoconazole. Sub-inhibitory concentrations of amphotericin B and fluconazole had little effect on surface antigens, whereas nystatin induced profound changes in surface antigens of yeast cells. The effects of such drug concentrations on yeast cells coupled with host defence mechanisms may have a significant affect on the course of Candida infections.
Resumo:
Tumour promoting phorbol esters such as 12-0-tetradecanoylphorbol-13-acetate (TPA) exert a multitude of biological effects on many cellular systems, many of which are believed to be mediated via the activation of the enzyme protein kinase C (PKC). TPA and other biologically active phorbol esters inhibited the proliferation of the A549 human lung carcinoma cell line. However, after 5-6 days culture in the continued presence of the phorbol ester cells began to proliferate at a rate similar to that of untreated cells. Resistance to TPA was lost following subculturing, although subculture in the presence of 10 nM TPA for more than 9 weeks resulted in a more resistant phenotype. The selection of a TPA-resistant subpopulation was not responsible for the observed resistance. The antiproliferative properties of other PKC activators were investigated. Mezerein induced the same antiproliferative effects as TPA but synthetic diacylglycerols (DAGs), the presumed physiological ligands of PKC, exerted only a non-specific cytotoxic influence on growth. Bryostatins 1 and 2 were able to induce transient growth arrest of A549 cells in a manner similar to phorbol esters at nanomolar concentrations, but at higher concentrations blocked both their own antiproliferative action and also that of phorbol esters and mezerein. Fourteen compounds synthesized to mimic features of the phorbol ester pharmacophore and/or DAGs did not mimic the antiproliferative properties of TPA in A549 cells and exerted only a DAG-like non-specific cytotoxicity at high concentrations. The subcellular distribution and activity of PKC was determined following partial purification by non-denaturing polyacrylamide gel electrophoresis. Treatment with TPA, mezerein or bryostatins resulted in a concentration-dependent shift of PKC activity from the cytosol to cellular membranes within 30 min. Significant translocation was not observed on treatment with DAGs. Chronic exposure of cells to TPA caused a time- and concentration dependent down-regulation of functional PKC activity. A complete loss of PKC activity was also observed on treatment with growth-inhibitory concentrations of bryostatins. No PKC activity was detected in cells resistant to the growth-inhibitory influence of TPA. Measurement of intracellular Ca2+ concentrations using A549 cells cultured on Cytodex 1 microcarrier beads revealed that TPA, mezerein and the bryostatins induced a similar rapid rise in intracellular Ca2+ levels.
Resumo:
Chronic experimental lung infection in rats was induced by intratracheal inoculation of agar beads containing Pseudomonas aeruginosa. Bacteria were recovered directly without subculture from the lungs of rats at 14 days post-infection and the outer membrane (OM) antigens were studied. The results indicated that bacteria grew under iron-restricted conditions as revealed by the expression of several iron-regulated membrane proteins (IRMPs) which could also be observed when the isolate was grown under iron-depleted conditions in laboratory media. The antibody response to P. aeruginosa OM protein antigens was investigated by immunoblotting with serum and lung fluid from infected rats. These fluids contained antibodies to all the major OM proteins, including the IRMPs, and protein H1. Results obtained using immunoblotting and enzyme-linked immunosorbent assay indicated that lipopolysaccharide (LPS) was the major antigen recognised by antibodies in sera from infected rats. The animal model was used to follow the development of the immune response to P. aeruginosa protein and LPS antigens. Immunoblotting was used to investigate the antigens recognised by antibodies in sequential serum samples. An antibody response to the IRMPs and OM proteins D, E, G and H1 and alao to rough LPS was detected as early as 4 days post-infection. Results obtained using immunoblotting and crossed immunoelectrophoresis techniques indicated that there was a progressive increase in the number of P. aeruginosa antigens recognised by antibodies in these sera. Both iron and magnesium depletion influenced protein H1 production. Antibodies in sera from patients with infections due to P. aeruginosa reacted with this antigen. Results obtained using quantitative gas-liquid chromatographic analysis indicated that growth phase and magnesium and iron depletion also affected the amount of LPS fatty acids, produced by P. aeruginosa. The silver stained SDS-polyacrylamide gels of proteinase K digested whole cell lysates of P. aeruginosa indicated that the O-antigen and core LPS were both affected by growth phase and specific nutrient depletion.