967 resultados para POLY(VINYLIDENE FLUORIDE)
Sulfonated poly(arylene-co-imide)s as water stable proton exchange membrane materials for fuel cells
Resumo:
A novel sulfonated poly(arylene-co-imide)s were synthesized by Ni(0) catalytic copolymerization of sodium 3-(2,5-dichlorobenzoyl)benzenesulfonate and naphthalimide dichloride monomer. The synthesized copolymers with the - SO3H group on the side-chain of polymers possessed high molecular weights revealed by their high viscosity and the formation of tough and flexible membranes. Because of the introduction of electron donating phenoxy groups into naphthalimide moieties, the hydrolysis of the imide rings was depressed. The resulting copolymers exhibited excellent water stability. The copolymer membranes display no apparently change in appearance, flexibility, and toughness after a soaking treatment in pressurized water at 140 degrees C for 250 h.
Resumo:
Self-assembly of binary blends of two triblock copolymers of poly(4-vinyl pyridine)-b-polystyrene-b-poly(4-vinyl pyridine), i.e., P4VP(43)-b-PS260-b-P4VP(43) (P1) and P4VP(43)-b-PS366-b-P4VP(43) (P2), in dioxane/water solution was studied. These two triblock copolymers individually tend to form vesicles (P2) and cylindrical micelles (P1) in dilute solution. It was found that copolymer components in the blend, sample preparation method, and annealing time had significant effect on hybridization aggregate morphology. By increasing P1 content in the copolymer blends, fraction of looped and stretched cylinders increased, while fraction of bilayers decreased. Nearly no bilayer was observed when P1 content was above 85 wt%.
Resumo:
Birefringent ring-banded spherulites with radial periodic variation of thicknesses were grown from poly(epsilon-caprolactone) (PCL) solutions under conditions for which the Solution concentration was held constant during the whole development of the morphology. The as-grown ring-banded spherulites were investigated by optical (OM) and atomic force (AFM) microscopies, by transmission electron microscopy (TEM) of samples sectioned parallel to the plane of film, and also by electron diffraction (ED) and grazing incidence X-ray diffraction (GIXD) techniques.
Resumo:
"Fluidic leakage" caused by vacuum force at the reversible sealing poly(dimethylsiloxane) (PDMS) interfaces was converted to one useable avenue, which led to formation of highly ordered surfactant microdroplets functionalized with ionic liquids (ILs). Vacuum force is the prerequisite to lead constant microsolutions to diffuse to the PDMS interfaces. Imidazolium ions of ILs rendered structural rearrangement of the surfactant aggregates and the ordered droplets formation.
Resumo:
In this paper, we present a facile and general synthetic route to high-quality alkaline earth metal fluoride (AEF(2), AE = Ca, Sr, Ba) nanocrystals and CaF2:Tb3+ nanocrystals based on the thermal decomposition of corresponding trifluoroacetate precursors in hot oleylamine. X-ray diffraction, transmission electron microscopy, thermogravimetric and differential thermal analysis, Fourier transform infrared spectra, photoluminescence spectra, and kinetic decays were employed to characterize the samples. The use of single-source precursors plays an important role in the formation of high-quality AEF(2) nanocrystals, and the formation process is demonstrated in detail.
Resumo:
Two new stepladder conjugated polymers, that is, poly(7,7,15,15-tetraoctyldinaphtho[1,2-a:1',2'-g]-s-indacene) (PONSI) and poly(7,7,15,15-tetra(4-octylphenyl)dinaphtho[1,2-a:1',2'-g]-s-indacene) (PANSI) with alkyl and aryl substituents, respectively, have been synthesized and characterized. In comparison with poly(indenofluorene)s, both polymers have extended conjugation at the direction perpendicular to the polymer backbone because of the introduction of naphthalene moieties. The emission color of the polymers in film state is strongly dependent on the substituents. While PONSI emits at a maximum of 463 nm, PANSI with the same backbone but aryl substituents displays dramatically redshifted emission with a maximum at 494 nm.
Resumo:
The dewetting behavior of polystyrene (PS) film on poly(methyl methacrylate) (PMMA) sublayer was investigated by changing the short-range roughness of the PMMA sublayer systemically. When the bilayer film was heated to the temperature above both Tgs, the protuberances formed in both layers to reduce the system energy. By tracing the dewetting process of the PS up-layer, the dewetting velocity was found to increase with the roughness of the sublayer.
Resumo:
Poly (3-butylthiophene) (P3BT) is a much less studied conjugated polymer despite its high crystallizability and thus excellent electrical property. In this work, morphology of P3BT at different crystalline polymorphs and solvent/thermal induced phase transition between form I and U modifications have been intensively investigated by using optical microscopy, electron microscopy, differential scanning calorimetry, and X-ray diffraction. It is shown that a direct deposition from carbon disulfide (CS2) at fast evaporation results in P3BT crystals in form I modification, giving typical whiskerlike morphology. In contrast, low evaporation rate from CS, leads to formation of form II crystals with spherulitic morphology, which is so far scarcely observed in polythiophene.
Resumo:
In this work, we report a simple approach for controllable synthesis of one-dimensional (ID) gold nanoparticle (AuNP) assemblies in solution. In the presence of divalent metallic ions, poly(acrylic acid)-1-dodecanethiol-stabilized AuNPs (PAA-DDT@AuNPs) are found to form I D assemblies in aqueous solution by an ion-templated chelation process; this causes an easily measurable change in the absorption spectrum of the particles. The assemblies are very stable and remain suspended in solution for more than one month without significant aggregation.
Resumo:
A nonvolatile write-once-read-many-time (WORM-time) memory device based on poly(N-vinylcarbazole) (PVK) films was realized by thermally annealing. The device can be fabricated using a simple spin coat method. It was found that the control of PVK film surface morphology by thermally annealing plays an important role in achieving the WORM memory properties. The memory device showed an ON/OFF current ratio as high as 10(4) and the retention time was over 2000 s without degradation.
Resumo:
Infrared light-emitting diodes possess potential applications in optical communication and safety detection. in this paper, we fabricated near-infrared light-emitting diodes possess potential applications in optical communication and safety detection. in this paper, we fabricated near-infrared polymer light-emitting diode employing a commercial near-infrared (NIR) organic dye as an emissive dopant dispersed within poly(N-vinylcarbazole) (PVK) by spin-casting method. The used device structure was indium tin oxide/3,4-polyethylene-dioxythiophene-polystyrene sulfonate/PVK: NIR dye/Al.
Resumo:
Novel bioactive glass (13G) nanoparticles/poly(L-lactide) (PLLA) composites were prepared as promising bone-repairing materials. The BG nanoparticles (Si:P:Ca = 29:13:58 weight ratio) of about 40 run diameter were prepared via the sol-gel method. In order to improve the phase compatibility between the polymer and the inorganic phase, PLLA (M-n = 9700 Da) was linked to the surface of the BG particles by diisocyanate. The grafting ratio of PLLA was in the vicinity of 20 wt.%. The grafting modification could improve the tensile strength, tensile modulus and impact energy of the composites by increasing the phase compatibility.
Resumo:
Novel biodegradable poly(carbonate ester)s with photolabile protecting groups were synthesized by ring-opening copolymerization Of L-lactide (LA) with 5-methyl-5-(2-nitro-benzoxycarbonyl)-1,3-dioxan-2-one (MNC) with diethyl zinc (Et2Zn) as catalyst. The poly(L-lactide-co-5-methyl-5-carboxyl-1,3-dioxan-2-one) (P(LA-co-MCC)) was obtained by UV irradiation Of poly(L-lactide acid-co-5-methyl-5-(2-nitro-benzoxycarbonyl)-1,3-dioxan-2-one) (P(LA-co-MNC)) to remove the protective 2-nitrobenzyl group.
Resumo:
This paper presented a new approach for preparing a new type of slow-release membrane-encapsulated urea fertilizer with starch-g-PLLA as biodegradable carrier materials. By solution-casting and washing rapidly with water the urea was individually encapsulated within the starch matrix modified by L-lactide through in situ graft-copolymerization.
Resumo:
A series of novel poly(ester-carbonate)s bearing pendant allyl ester groups P(LA-co-MAC)s were prepared by ring-opening copolymerization Of L-lactide (LA) and 5-methyl-5-allyloxycarbonyl-1,3-dioxan-2-one (MAC) with diethyl zinc (ZnEt2) as initiator. NMR analysis investigated the microstructure of the copolymer. DSC results indicated that the copolymers displayed a single glass-transition temperature (T-g), which was indicative of a random copolymer, and the Tg decreased with increasing carbonate content in the copolymer.