935 resultados para PLASMODIUM-FALCIPARUM MALARIA
Resumo:
O estudo foi desenvolvido com o objetivo de caracterizar os genótipos da proteína circunsporozoíta de Plasmodium vivax, circulantes em área periférica da Ilha de São Luís, Maranhão. Foram obtidas amostras de sangue para exame parasitológico direto (gota espessa) de 126 indivíduos, dentre os quais, foram coletadas também 109 amostras para diagnóstico molecular, por reação em cadeia da polimerase. O exame parasitológico demonstrou a presença de Plasmodium vivax em 2 indivíduos, sintomáticos, enquanto o estudo molecular foi positivo para o Plasmodium vivax em 7 indivíduos (2 sintomáticos e positivos na gota espessa e 5 assintomáticos e negativos na gota espessa). Em dois havia associação com Plasmodium falciparum. A genotipagem das amostras de Plasmodium vivax revelou a variante VK 210, havendo associação com a variante VK 247 em duas delas.
Resumo:
INTRODUÇÃO: É frequente a associação da malária com complicações como prematuridade, retardo no crescimento intrauterino, baixo peso ao nascer e mortalidade infantil, efeitos pouco estudados em áreas hipoendêmicas para malaria. O objetivo deste estudo foi analisar a relação da malária gestacional com estes efeitos em recém-nascidosnuma região endêmica para malária na Colômbia, entre 1993 e 2007. MÉTODOS: Foram estudadas as características em 1.716 recém-nascidos num estudo de coorte. Fez-se seguimento em 394 gestantes com malária (27% por Plasmodium falciparum e 73% por P. vivax) e 1.322 sem malária. RESULTADOS: Foi encontrada uma relação entre a exposição à malária na gestação e o risco maior de baixo peso ao nascer (RR = 1,37; 1,03-1,83), assim como estatura baixa (RR = 1,52; 1,25-1,85), retardo no crescimento intrauterino (RR = 1,29; 1,0-1,66) e prematuridade (RR = 1,68; 1,3-2,17). A frequência de nascimentos prematuros foi maior nas mães com malária por P. falciparum (77%) que aquelas com P. vivax (RR = 1,77; IC 95%: 1,2-2,6). CONCLUSÕES: O baixo peso ao nascer e o retardo no crescimento foi associado com malária na gestação na Colômbia. A infecção por P. vivax foi relacionada com efeitos adversos sobre o recém-nascido, de modo semelhante em relação ao P. falciparum.
Resumo:
A malária é uma doença infecciosa complexa, que resulta do “vírus” plasmodium, e manifesta-se sob cinco tipos distintos de espécies protozoários (plasmodium vivax, plasmodium ovale, plasmodium falciparum, plasmodium malariae e plasmodium Knowlesi), atacando sobretudo os glóbulos vermelhos. Considerada a quinta maior causa de morte por doenças infecciosas em todo o mundo após doenças respiratórias, VIH/SIDA, doenças diarreicas e tuberculose, no continente africano, a malária é considerada a segunda causa do aumento da mortalidade, após VIH/SIDA. No caso particular da Guiné-Bissau, esta constitui a principal causa do incremento da morbilidade e da mortalidade naquele país, onde, em 2012 foram notificados 129.684 casos de paludismo, dos quais 370 resultaram em óbitos. Partindo da realidade acima constatada, em particular, da complexidade e o impacto global da doença associada a uma forte mortalidade e morbilidade, concluiu-se ser necessário abordar esta temática, utilizando os SIG e a DR no sentido de determinar as regiões de elevado risco. Entendeu-se serem necessárias novas abordagens e novas ferramentas de análise dos dados epidemiológicos e consequentemente novas metodologias que possibilitem a determinação de áreas de risco por malária. O presente estudo, pretende demonstrar o papel dos SIG e DR na determinação das regiões de risco por malária. A metodologia utilizada centrou-se numa abordagem quantitativa baseada na hierarquização das variáveis. Pretende-se, assim abordar os impactos da malária e simultaneamente demonstrar as potencialidades dos SIG e das ferramentas de Análise Espacial no estudo da disseminação da mesma na Guiné-Bissau.
Resumo:
South American Aoutus an d Saimiri monkeys, which are susceptible to infection with human malarias, have been used to develop models for the testing of huma malaria vaccines. Studies indicate that blood-stage and sporozoite vaccines can be tested in these monkeys using appropriate strains of parasites.
Resumo:
The apical membrane antigen (AMA-1) family of malaria merozoite proteins is characterised by a high degree of inter-species conservation. Evidence that the protein (PK66/AMA-1) from the simian parasite Plasmodium knowlesi was protective in rhesus monkeys suggested that the 83kDa P. falciparum equivalent (PF83/AMA-1) should be investigated for protective effects in humans. Here we briefly review pertinent comparative data, and describe the use of an eukaryotic full length recombinant PF83/AMA-1 molecule to develop a sensitive ELISA for the determination of serological responses in endemic populations. The assay has revealed surprisingly high levels of humoral response to this quantitatively minor antigen. We also show that PK66/AMA-1 inhibitory mAb's are active against merozoites subsequent to release from schizont-infected red cells, further implicating AMA-1 molecules in red cell invasion.
Resumo:
The systematic screening of more than 250 molecules against Plasmodium falciparum in vitro has previously shown that interfering with phospholipid metabolism is lethal to the malaria parasite. These compounds act by impairing choline transport in infected erythrocytes, resulting in phosphatidylcholine de novo biosynthesis inhibition. A thorough study was carried out with the leader compound G25, whose in vitro IC50 is 0.6 nM. It was very specific to mature parasites (trophozoïtes) as determined in vitro with P. falciparum and in vivo with P. chabaudi -infected mice. This specificity corresponds to the most intense phase of phospholipid biosynthesis activity during the parasite cycle, thus corroborating the mechanism of action. The in vivo antimalarial activity (ED50) against P. chabaudi was 0.03 mg/kg, and a similar sensitivity was obtained with P. vinckei petteri, when the drug was intraperitoneally administered in a 4 day suppressive test. In contrast, P. berghei was revealed as less sensitive (3- to 20-fold, depending on the P. berghei-strain). This difference in activity could result either from the degree of synchronism of every strain, their invasion preference for mature or immature red blood cells or from an intrinsically lower sensitivity of the P. berghei strain to G25. Irrespective of the mode of administration, G25 had the same therapeutic index (lethal dose 50 (LD50)/ED50) but the dose to obtain antimalarial activity after oral treatment was 100-fold higher than after intraperitoneal (or subcutaneous) administration. This must be related to the low intestinal absorption of these kind of compounds. G25 succeeded to completely inhibiting parasitemia as high as 11.2% without any decrease in its therapeutic index when administered subcutaneously twice a day for at least 8 consecutive days to P. chabaudi -infected-rodent model. Transition to human preclinical investigations now requires a synthesis of molecules which would permit oral absorption.
Resumo:
Many protozoan parasites represent an important group of human pathogens. Pulsed Field Gradient Gel Electrophoresis (PFGE) analysis has been an important tool for fundamental genetic studies of parasites like Trypanosoma, Leishmania, Giardia or the human malaria parasite Plasmodium falciparum. We present PFGE conditions allowing a high resolution separation of chromosomes ranging from 500 to 4000 kb within a two day electrophoresis run. In addition, we present conditions for separating large chromosomes (2000-6000 kb) within 36 hr. We demontrate that the application of two dimentional PFGE (2D-PFGE) technique to parasite karyotypes is a very useful method for the analysis of dispersed gene families and comparative studies of the intrachomosomal genome organization
Resumo:
Plasmodium falciparum sensitivity to chloroquine (CHL), amodiaquine (AMO) and sulfadoxine/pyrimethamine (SDX/PYR) was assessed in vivo and in vitro in a representative sample from the population of Zaragoza in El Bajo Cauca region (Antioquia-Colombia). There were 94 patients with P. falciparum evaluated. For the in vivo test the patients were followed by clinical examination and microscopy, during 7 days. The in vitro test was performed following the recommendations of the World Health Organization. The in vivo prevalence of resistance to CHL was 67%, to AMO 3% and to SDX/PYR 9%. The in vitro test showed sensitivity to all antimalarials evaluated. Concordance for CHL between the in vivo and in vitro tests was 33%. For AMO and SDX/PYR, the concordance was 100%. We conclude that a high percentage of patients are resistant to CHL (in vivo). A high rate of intestinal parasitism might explain in part, the differences observed between the in vivo and the in vitro results. Therefore, new policies and treatment regimens should be proposed for the treatment of the infection in the region. Nationwide studies assessing the degree of resistance are needed.
Resumo:
The ancestors of present-day man (Homo sapiens sapiens) appeared in East Africa some three and a half million years ago (Australopithecs), and then migrated to Europe, Asia, and later to the Americas, thus beginning the differentiation process. The passage from nomadic to sedentary life took place in the Middle East in around 8000 BC. Wars, spontaneous migrations and forced migrations (slave trade) led to enormous mixtures of populations in Europe and Africa and favoured the spread of numerous parasitic diseases with specific strains according to geographic area. The three human plasmodia (Plasmodium falciparum, P. vivax, and P. malariae) were imported from Africa into the Mediterranean region with the first human migrations, but it was the Neolithic revolution (sedentarisation, irrigation, population increase) which brought about actual foci for malaria. The reservoir for Leishmania infantum and L. donovani - the dog - has been domesticated for thousands of years. Wild rodents as reservoirs of L. major have also long been in contact with man and probably were imported from tropical Africa across the Sahara. L. tropica, by contrast, followed the migrations of man, its only reservoir. L. infantum and L. donovani spread with man and his dogs from West Africa. Likewise, for thousands of years, the dog has played an important role in the spread and the endemic character of hydatidosis through sheep (in Europe and North Africa) and dromadary (in the Sahara and North Africa). Schistosoma haematobium and S. mansoni have existed since prehistoric times in populations living in or passing through the Sahara. These populations then transported them to countries of Northern Africa where the specific, intermediary hosts were already present. Madagascar was inhabited by populations of Indonesian origin who imported lymphatic filariosis across the Indian Ocean (possibly of African origin since the Indonesian sailors had spent time on the African coast before reaching Madagascar). Migrants coming from Africa and Arabia brought with them the two African forms of bilharziosis: S. haematobium and S. mansoni.
Resumo:
Resistance in Plasmodium falciparum to amodiaquine (AQ) can be reversed in vitro with with antihistaminic and tricyclic antidepressant compounds, but its significance in vivo is unclear. The present report presents the enhancement of the antimalarial efficacy of AQ by chlorpheniramine, an H1 receptor antagonist that reverses chloroquine (CQ) resistance in vitro and enhances its efficacy in vivo, in five children who failed CQ and/or AQ treatment, and who were subsequently retreated and cured with a combination of AQ plus CP, despite the fact that parasites infecting the children harboured mutant pfcrtT76 and pfmdr1Y86 alleles associated with AQ resistance. This suggests a potential clinical appliation of the reversal phenomenon.
Resumo:
The study assessed the operational feasibility and acceptability of insecticide-treated mosquito nets (ITNs) in one Primary Health Centre (PHC) in a falciparum malaria endemic district in the state of Orissa, India, where 74% of the people are tribes and DDT indoor residual spraying had been withdrawn and ITNs introduced by the National Vector Borne Disease Control Programme. To a population of 63,920, 24,442 ITNs were distributed free of charge through 101 treatment centers during July-August 2002. Interview of 1,130, 1,012 and 126 respondents showed that the net use rates were 80%, 74% and 55% in the cold, rainy and summer seasons, respectively. Since using ITNs, 74.5-76.6% of the respondents observed reduction of mosquito bites and 7.2-32.1% reduction of malaria incidence; 37% expressed willingness to buy ITNs if the cost was lower and they were affordable. Up to ten months post-treatment, almost 100% mortality of vector mosquitoes was recorded on unwashed and washed nets (once or twice). Health workers re-treated the nets at the treatment centers eight months after distribution on a cost-recovery basis. The coverage reported by the PHC was only 4.2%, mainly because of unwillingness of the people to pay for re-treatment and to go to the treatment centers from their villages. When the re-treatment was continued at the villages involving personnel from several departments, the coverage improved to about 90%.Interview of 126 respondents showed that among those who got their nets re-treated, 81.4% paid cash for the re-treatment and the remainder were reluctant to pay. Majority of those who paid said that they did so due to the fear that if they did not do so they would lose benefits from other government welfare schemes. The 2nd re-treatment was therefore carried out free of charge nine months after the 1st re-treatment and thus achieved coverage of 70.4%. The study showed community acceptance to use ITNs as they perceived the benefit. Distribution and re-treatment of nets was thus possible through the PHC system, if done free of charge and when personnel from different departments, especially those at village level, were involved.
Resumo:
Malaria remains an important health problem in tropical countries like Brazil. Thrombocytopenia is the most common hematological disturbance seen in malarial infection. Oxidative stress (OS) has been implicated as a possible mediator of thrombocytopenia in patients with malaria. This study aimed to investigate the role of OS in the thrombocytopenia of Plasmodium vivax malaria through the measurement of oxidant and antioxidant biochemical markers in plasma and in isolated platelets. Eighty-six patients with P. vivax malaria were enrolled. Blood samples were analyzed for total antioxidant and oxidant status, albumin, total protein, uric acid, zinc, magnesium, bilirubin, total thiols, glutathione peroxidase (GPx), malondialdehyde (MDA), antibodies against mildly oxidized low-density lipoproteins (LDL-/nLDL ratio) and nitrite/nitrate levels in blood plasma and GPx and MDA in isolated platelets. Plasma MDA levels were higher in thrombocytopenic (TCP) (median 3.47; range 1.55-12.90 µmol/L) compared with the non-thrombocytopenic (NTCP) patients (median 2.57; range 1.95-8.60 µmol/L). Moreover, the LDL-/nLDL autoantibody ratio was lower in TCP (median 3.0; range 1.5-14.8) than in NTCP patients (median 4.0; range 1.9-35.5). Finally, GPx and MDA were higher in the platelets of TPC patients. These results suggest that oxidative damage of platelets might be important in the pathogenesis of thrombocytopenia found in P. vivax malaria as indicated by alterations of GPx and MDA.
Resumo:
In the present study, in vitro techniques were used to investigate a range of biological activities of known natural quassinoids isobrucein B (1) and neosergeolide (2), known semi-synthetic derivative 1,12-diacetylisobrucein B (3), and a new semi-synthetic derivative, 12-acetylneosergeolide (4). These compounds were evaluated for general toxicity toward the brine shrimp species Artemia franciscana, cytotoxicity toward human tumour cells, larvicidal activity toward the dengue fever mosquito vector Aedes aegypti, haemolytic activity in mouse erythrocytes and antimalarial activity against the human malaria parasite Plasmodium falciparum. Compounds 1 and 2 exhibited the greatest cytotoxicity against all the tumor cells tested (IC50 = 5-27 µg/L) and against multidrug-resistant P. falciparum K1 strain (IC50 = 1.0-4.0 g/L) and 3 was only cytotoxic toward the leukaemia HL-60 strain (IC50 = 11.8 µg/L). Quassinoids 1 and 2 (LC50 = 3.2-4.4 mg/L) displayed greater lethality than derivative 4 (LC50 = 75.0 mg/L) toward A. aegypti larvae, while derivative 3 was inactive. These results suggest a novel application for these natural quassinoids as larvicides. The toxicity toward A. franciscana could be correlated with the activity in several biological models, a finding that is in agreement with the literature. Importantly, none of the studied compounds exhibited in vitro haemolytic activity, suggesting specificity of the observed cytotoxic effects. This study reveals the biological potential of quassinoids 1 and 2 and to a lesser extent their semi-synthetic derivatives for their in vitro antimalarial and cytotoxic activities.
Resumo:
Malaria diagnoses has traditionally been made using thick blood smears, but more sensitive and faster techniques are required to process large numbers of samples in clinical and epidemiological studies and in blood donor screening. Here, we evaluated molecular and serological tools to build a screening platform for pooled samples aimed at reducing both the time and the cost of these diagnoses. Positive and negative samples were analysed in individual and pooled experiments using real-time polymerase chain reaction (PCR), nested PCR and an immunochromatographic test. For the individual tests, 46/49 samples were positive by real-time PCR, 46/49 were positive by nested PCR and 32/46 were positive by immunochromatographic test. For the assays performed using pooled samples, 13/15 samples were positive by real-time PCR and nested PCR and 11/15 were positive by immunochromatographic test. These molecular methods demonstrated sensitivity and specificity for both the individual and pooled samples. Due to the advantages of the real-time PCR, such as the fast processing and the closed system, this method should be indicated as the first choice for use in large-scale diagnosis and the nested PCR should be used for species differentiation. However, additional field isolates should be tested to confirm the results achieved using cultured parasites and the serological test should only be adopted as a complementary method for malaria diagnosis.