997 resultados para PI3-kinase


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tuberculosis made a resurgence in the mid-1980s and now kills approximately 3 million people a year. The re-emergence of tuberculosis as a public health threat, the high susceptibility of HIV-infected persons and the proliferation of multi-drug-resistant strains have created a need to develop new drugs. Shikimate kinase and other enzymes in the shikimate pathway are attractive targets for development of non-toxic antimicrobial agents, herbicides and anti-parasitic drugs, because the pathway is essential in these species whereas it is absent from mammals. The crystal structure of shikimate kinase from Mycobacterium tuberculosis (MtSK) complexed with MgADP and shikimic acid ( shikimate) has been determined at 2.3 Angstrom resolution, clearly revealing the amino-acid residues involved in shikimate binding. This is the first three-dimensional structure of shikimate kinase complexed with shikimate. In MtSK, the Glu61 residue that is strictly conserved in shikimate kinases forms a hydrogen bond and salt bridge with Arg58 and assists in positioning the guanidinium group of Arg58 for shikimate binding. The carboxyl group of shikimate interacts with Arg58, Gly81 and Arg136 and the hydroxyl groups interact with Asp34 and Gly80. The crystal structure of MtSK-MgADP-shikimate will provide crucial information for the elucidation of the mechanism of the shikimate kinase-catalyzed reaction and for the development of a new generation of drugs against tuberculosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tuberculosis (TB) remains the leading cause of mortality due to a bacterial pathogen, Mycobacterium tuberculosis. However, no new classes of drugs for TB have been developed in the past 30 years. Therefore there is an urgent need to develop faster acting and effective new antitubercular agents, preferably belonging to new structural classes, to better combat TB, including MDR-TB, to shorten the duration of current treatment to improve patient compliance, and to provide effective treatment of latent tuberculosis infection. The enzymes in the shikimate pathway are potential targets for development of a new generation of antitubercular drugs. The shikimate pathway has been shown by disruption of aroK gene to be essential for the Mycobacterium tuberculosis. The shikimate kinase (SK) catalyses the phosphorylation of the 3-hydroxyl group of shikimic acid (shikimate) using ATP as a co-substrate. SK belongs to family of nucleoside monophosphate (NMP) kinases. The enzyme is an alpha/beta protein consisting of a central sheet of five parallel beta-strands flanked by alpha-helices. The shikimate kinases are composed of three domains: Core domain, Lid domain and Shikimate-binding domain. The Lid and Shikimate-binding domains are responsible for large conformational changes during catalysis. More recently, the precise interactions between SK and substrate have been elucidated, showing the binding of shikimate with three charged residues conserved among the SK sequences. The elucidation of interactions between MtSK and their substrates is crucial for the development of a new generation of drugs against tuberculosis through rational drug design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Roscovitine and flavopiridol have been shown to potently inhibit cyclin-dependent kinase 1 and 2 (CDK1 and 2). The structures of CDK2 complexed with roscovitine and deschoroflavopiridol have been reported, however no crystallographic structure is available for complexes of CDK1 with inhibitors. The present work describes two molecular models for the binary complexes CDK1:roscovitine and CDK1:flavopiridol. These structural models indicate that both inhibitors strongly bind to the ATP-binding pocket of CDKI and structural comparison of the CDK complexes correlates the structures with differences in inhibition of these CDKs by flavopiridol and roscovitine. This article explains the structural basis for the observed differences in activity of these inhibitors. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyclin-dependent kinases (CDKs) have been identified as potential targets for development of drugs, mainly against cancer. These studies generated a vast library of chemical inhibitors of CDKs, and some of these molecules can also inhibit kinases identified in the Plasmodium falciparum genome. Here we describe structural models for Protein Kinase 6 from P. falciparum (PfPK6) complexed with Roscovitine and Olomoucine. These models show clear structural evidence for differences observed in the inhibition, and may help designing inhibitors for PfPK6 generating new potential drugs against malaria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacteria, fungi and plants can convert carbohydrate and phosphoenolpyruvate into chorismate, which is the precursor of various aromatic compounds. The seven enzymes of the shikimate pathway are responsible for this conversion. Shikimate kinase (SK) is the fifth enzyme in this pathway and converts shikimate to shikimate-3-phosphate. In this work, the conformational changes that occur on binding of shikimate, magnesium and chloride ions to SK from Mycobacterium tuberculosis (MtSK) are described. It was observed that both ions and shikimate influence the conformation of residues of the active site of MtSK. Magnesium influences the conformation of the shikimate hydroxyl groups and the position of the side chains of some of the residues of the active site. Chloride seems to influence the affinity of ADP and its position in the active site and the opening length of the LID domain. Shikimate binding causes a closing of the LID domain and also seems to influence the crystallographic packing of SK. The results shown here could be useful for understanding the catalytic mechanism of SK and the role of ions in the activity of this protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here is described a structural model for the binary complex CDK5-roscovitine. Roscovitine has been shown to potently inhibit cyclin-dependent kinases 1, 2 and 5 (CDK1, 2, and 5), and the structure of CDK2 complexed with roscovitine has been reported; however, no structural data, are available for complexes of CDK5 with inhibitors. The structural model indicates that roscovitine strongly binds to the ATP-binding pocket of CDK5 and structural comparison of the CDK2-roscovitine complex correlates the structural differences with differences in inhibition of these CDKs by this inhibitor. This structure opens the possibility of testing new inhibitor families, in addition to new substituents for the already known lead structures of adenine derivatives. (C) 2002 Elsevier B.V. (USA). All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Matrix metal loprotease-13 (MMP-13) is induced by pro-inflammatory cytokines and increased expression is associated with a number of pathological conditions such as tumor metastasis, osteoarthritis, rheumatoid arthritis and periodontal diseases. MMP-13 gene regulation and the signal transduction pathways activated in response to bacterial LPS are largely unknown. In these studies, the role of the mitogen-activated protein kinase (MAPK) pathways in the regulation of MMP-13 induced by lipopolysaccharide was investigated. Lipopolysaccharide from Escherichia coli and Actinobacillus actinomycetemcomitans significantly (P < 0.05) increased MMP-13 steady-state mRNA (average of 27% and 46% increase, respectively) in murine periodontal ligament fibroblasts. MMP-13 mRNA induction was significantly reduced by inhibition of p38 MAP kinase. Immunoblot analysis indicated that p38 signaling was required for LPS-induced MMP-13 expression. Lipopolysaccharide induced proximal promoter reporter (-660/+32 mMMP-13) gene activity required p38 signaling. Collectively, these results indicate that lipopolysaccharide-induced murine MMP-13 is regulated by p38 signaling through a transcriptional mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study describes a methodology of dosage of glycerol kinase (GK) from baker's yeast. The standardization of the activity of the glycerol kinase from baker's yeast was accomplished using the diluted enzymatic preparation containing glycerol phosphate oxidase (GPO) and glycerol kinase. The mixture was incubated at 60 degrees C by 15 min and the reaction was stopped by the SDS solution addition. A first set of experiments was carried out in order to investigate the individual effect of temperature (7), pH and substrate concentration (S), on GK activity and stability. The pH and temperature stability tests showed that the enzyme presented a high stability to pH 6.0-8.0 and the thermal stability were completely maintained up to 50 degrees C during 1 h. The K(m) of the enzyme for glycerol was calculated to be 2 mM and V(max) to be 1.15 U/mL. In addition, modeling and optimization of reaction conditions was attempted by response surface methodology (RSM). Higher activity values will be attained at temperatures between 52 and 56 degrees C, pH around 10.2-10.5 and substrate concentrations from 150 to 170 mM.This low cost method for glycerol kinase dosage in a sequence of reactions is of great importance for many industries, like food, sugar and alcohol. RSM showed to be an adequate approach for modeling the reaction and optimization of reaction conditions to maximize glycerol kinase activity. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The highly conserved eukaryotic translation initiation factor eIF5A has been proposed to have various roles in the cell, from translation to mRNA decay to nuclear protein export. To further our understanding of this essential protein, three temperature-sensitive alleles of the yeast TIF51A gene have been characterized. Two mutant eIF5A proteins contain mutations in a proline residue at the junction between the two eIFSA domains and the third, strongest allele encodes a protein with a single mutation in each domain, both of which are required for the growth defect. The stronger tif51A alleles cause defects in degradation of short-lived mRNAs, supporting a role for this protein in mRNA decay. A multicopy suppressor screen revealed six genes, the overexpression of which allows growth of a tif51A-1 strain at high temperature; these genes include PAB1, PKC1, and PKC1 regulators WSC1, WSC2, and WSC3. Further results suggest that eIFSA may also be involved in ribosomal synthesis and the WSC/PKC1 signaling pathway for cell wall integrity or related processes.