798 resultados para PHOTOLUMINESCENCE PROPERTY
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this work we analyze the relation between the interface microroughness and the full width at half maximum (FWHM) of the photoluminescence (PL) spectra for a GaAs/Ga0.7Al0.3As multiple quantum well (QW) system. We show that, in spite of the complex correlation between the microscopic interface-defects parameters and the QW optical properties, the Singh and Bajaj model [Appl. Phys. Lett. 44, 805 (1984)] provides a good quantitative description of the excitonic PL-FWHM. ©1999 The American Physical Society.
Resumo:
Intense photoluminescence in highly disordered (amorphous) BaTiO3, PbTiO3, and SrTiO3 prepared by the polymeric precursor method was observed at room temperature. The emission band maxima from the three materials are in the visible region and depend on the exciting wavelength. The origin of the photoluminescence was not exactly identified. However, the line shape indicates that confinement effects are not probable. The experimental results indicate that it could be related to the disordered perovskite structure. © 2000 American Institute of Physics.
Resumo:
Infrared and photoluminescence spectroscopies have been used to investigate the local environment of the Eu3+ ions in luminescent sol-gel derived materials-di-ureasils-based on a hybrid framework represented by U(600). This host is composed of a siliceous backbone grafted, through urea cross-links, to both ends of polymer segments incorporating 8.5 oxyethylene repeat units. The active centers have been introduced as europium perchlorate, Eu(ClO4)3. Samples with compositions n = 232, 62, 23, 12, and 6 (where n denotes the ratio of (OCH2CH2) moieties per lanthanide ion) have been examined. The combination of the information retrieved from the analysis of characteristic bands of the FTIR spectra-the perchlorate and the Amide I/Amide II features-with that obtained from the photoluminescence data demonstrates that at compositions n = 232 and 62 the anions are free, whereas the Eu3+ ions are complexed by the heteroatoms of the polyether chains. At higher salt concentration, the cations are bonded, not only to the ClO4 - ions, but also to the ether oxygen atoms of the organic segments and to the carbonyl oxygen atoms of the urea linkages. The dual behavior of U(600) with respect to cation coordination has been attributed to the presence in this nanohybrid of strong hydrogen-bonded urea-urea structures, which, at low salt content, cannot be disrupted, thus inhibiting the formation of Eu3+-O=C(urea) contacts and promoting the interaction between the lanthanide ions and the (OCH2CH2) moieties. The present work substantiates the claim that the activation of the coordinating sites of the di-ureasil framework can be tuned by varying either the guest salt concentration at constant chain length or the length of the.organic segments at constant salt concentration. This relevant property opens challenging new prospects in the fields of application of this class of hybrids. © 2001 American Chemical Society.
Resumo:
The aim of this investigation was to evaluate the osteoinductive property of autogenous demineralized dentin matrix (ADDM) on experimental surgical bone defects in the parietal bone of rabbits using the guided bone regeneration (GBR) technique incorporating human amniotic membrane (HAM). Thirty-six rabbits were divided into 2 groups, HAM and ADDM+HAM. It was possible to conclude that HAM did not interfere with bone repair and was resorbed. Slices of ADDM induced direct bone formation and were incorporated by the newly formed bone tissue and remodeled. The bone defects healed faster in the ADDM+HAM group than in the group with HAM only.
Resumo:
Pb1-xLaxTiO3 thin films, (X=0.0; 13 and 0.27mol%) were prepared by the polymeric precursor method. Thin films were deposited on Pt/Ti/SiO2/Si(111), Si(100) and glass substrates by spin coating, and annealed in the 200-300°C range in an O2 atmosphere. X-ray diffraction, scanning electron microscopy and atomic force microscopy were used for the microstructural characterization of the thin films. Photoluminescence (PL) at room temperature has been observed in thin films of (PbLa)TiO3. The films deposited on Pt/Ti/SiO2/Si substrates present PL intensity greater than those deposited on glass and silicon substrates. The intensity of PL in these thin films was found to be dependent on the thermal treatment and lanthanum molar concentration. © 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Room-temperature photoluminescence (PL) was observed in undoped and 2 mol% Cr-, Al- and Y-doped amorphous SrTiO3 thin films. Doping increased the PL, and in the case of Cr significantly reduced the associated PL wavelength. The optical bandgaps, calculated by means of UV-vis absorption spectra, increased with crystallinity and decreased with the doping level. It was considered that yttrium and aluminum substituted Sr2+, whereas chromium replaced Ti4+. It is believed that luminescence centers are oxygen-deficient BO6 complexes, or the same centers with some other defects, such as oxygen or strontium vacancies, or BO6 complexes with some other defects placed in their neighborhood. The character of excitation and the competition for negatively charged non-bridging oxygen (NBO) among numerous types of BO6 defect complexes in doped SrTiO3 results in various broadband luminescence peak positions. The results herein reported are an indicative that amorphous titanates are sensitive to doping, which is important for the control of the electro-optic properties of these materials. The probable incorporation of Cr into the Ti site suggests that the existence of a double network former can lead to materials displaying a more intense photoluminescence.
Resumo:
Planar waveguides with low losses in the infrared (from 0.6-1.1 dB/cm) were prepared with sol-gel derived poly(oxyethylene)/siloxane hybrid doped with zirconium(IV) n-propoxide (ZPO) and methacryloxypropyltrimethoxysilane (MAPTMS). The doped nanohybrids were characterized by small angle X-ray scattering, 29Si nuclear magnetic resonance and photoluminescence spectroscopy and compared with the undoped hybrid material. The results indicate an effective interaction between the zirconium particles and the siliceous nanodomains. © 2005 Materials Research Socicty.
Resumo:
A series of segmented poly(urethane-urea)s containing 1,3,5 triazine in the hard block and hexamethylene spacers in the soft block was prepared. The hard to soft segment ratio was varied systematically, to afford a series of polymers in which the chromophore concentration varied from 4.2% to 18.1%. Although triazine emission is located in the UV region, the films with higher content of the chromophore emitted a visible blue light (425 nm) when excited at the very red-edge of the absorption band. The photophysical properties of the materials were strongly dependent on the relative amount of triazine moieties along the main chain. Isolated moieties emit in copolymers with small amount of triazine groups, indicating that even though in solid state, these moieties tend to be apart. Two photophysical consequences were observed when the amount of triazine increases: there is some energy transfer process involving isolated moieties with consequent decrease of the lifetime and an additional red-edge emission attributed to aggregated lumophores. The mono-exponential decay observed for the isolated form is substituted by a bi-exponential decay of the aggregated species. The materials were not strong emitters, but since the N-containing triazine moieties are good electron transport groups, the polymers have potential application as electron transport enhancers in various applications. © 2006 Elsevier B.V. All rights reserved.
Resumo:
Visible photoluminescence was generated in standard soda-lime-silica glass powder, mechanically milled in a high-energy attrition mill. The broad emission band maximum shows a linear dependence on the exciting wavelength, suggesting the possibility to tune the PL emission. The photoluminescence was attributed to defect generation related to unsatisfied chemical bonds due to the high surface area. Raman scattering and ultraviolet-visible optical reflectance measurements corroborate this assertion. Transmission electron microscopy measurements indicate that the powder is composed by nanocrystallites with about 10-20 nanometers immersed in an amorphous media.
Resumo:
Dos copias disponibles
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Includes Bibliography