784 resultados para PHOSPHOLIPID-BILAYERS
Resumo:
An in vitro model using highly purified freshly isolated T cells demonstrated that immobilized ligands for the integrin $\alpha4\beta1$ could cooperate to enhance mitogen signals delivered by coimmobilized anti-CD3 specfic monoclonal antibody OKT3. Costimulation through $\alpha4\beta1$ integrin lead to enhanced proliferation which depended on expression of both IL-2 as well as IL-2 receptor. The transcription factors NF-AT, AP-1, and NF-$\kappa$B, which are involved in the regulation of IL-2 as well as other cytokine genes, were weakly induced by anti-CD3 stimulation alone in electromobility shift assays, but were augmented significantly with $\alpha4\beta1$ costimulation. These results suggested that $\alpha4\beta1$ ligands delivered a growth promoting signal which could synergize with signals induced by engagement of the TCR/CD3 complex, and also suggested a dual function for integrins in both localization and subsequent delivery of a growth promoting signal for T lymphocytes. Integrin involvement in lymphocyte trafficking has been employed as a model for understanding tumor cell metastasis. Therefore we have extended the duality of integrin function in both homing and subsequent delivery of a growth promoting signal to include a role for integrins in providing growth stimulation for tumor cells. Using a gastric derived tumor line, inhibition of adhesion to substrate leads to G0/G1 cell cycle arrest, reduced cyclin A expression, and reduced phospholipid synthesis. This effect could be reversed upon $\alpha2\beta1$ integrin mediated reattachment to collagen. These observations demonstrated a role for an integrin in the growth regulation of a tumor line. The small GTP-binding protein Rho, implicated in phospholipid synthesis, can be inactivated by the ADP-ribosylation exoenzyme C3 from C. botulinum. Addition of C3 to cell cultures inhibited the growth promoting effect due to integrin mediated adhesion. Taken together, these results are consistent with a model for cooperative interaction between integrins and Rho leading to enhanced phospholipid synthesis and mitogen signaling. This model may provide a basis for understanding the phenomena of integrin costimulation in T cell activation. ^
Resumo:
The emergent discipline of metabolomics has attracted considerable research effort in hepatology. Here we review the metabolomic data for non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), cirrhosis, hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), alcoholic liver disease (ALD), hepatitis B and C, cholecystitis, cholestasis, liver transplantation, and acute hepatotoxicity in animal models. A metabolomic window has permitted a view into the changing biochemistry occurring in the transitional phases between a healthy liver and hepatocellular carcinoma or cholangiocarcinoma. Whether provoked by obesity and diabetes, alcohol use or oncogenic viruses, the liver develops a core metabolomic phenotype (CMP) that involves dysregulation of bile acid and phospholipid homeostasis. The CMP commences at the transition between the healthy liver (Phase 0) and NAFLD/NASH, ALD or viral hepatitis (Phase 1). This CMP is maintained in the presence or absence of cirrhosis (Phase 2) and whether or not either HCC or CCA (Phase 3) develops. Inflammatory signalling in the liver triggers the appearance of the CMP. Many other metabolomic markers distinguish between Phases 0, 1, 2 and 3. A metabolic remodelling in HCC has been described but metabolomic data from all four Phases demonstrate that the Warburg shift from mitochondrial respiration to cytosolic glycolysis foreshadows HCC and may occur as early as Phase 1. The metabolic remodelling also involves an upregulation of fatty acid β-oxidation, also beginning in Phase 1. The storage of triglycerides in fatty liver provides high energy-yielding substrates for Phases 2 and 3 of liver pathology. The metabolomic window into hepatobiliary disease sheds new light on the systems pathology of the liver.
Resumo:
Trichloroethylene (TCE)-induced liver toxicity and carcinogenesis is believed to be mediated in part by activation of the peroxisome proliferator-activated receptor α (PPARα). However, the contribution of the two TCE metabolites, dichloroacetate (DCA) and trichloroacetate (TCA) to the toxicity of TCE, remains unclear. The aim of the present study was to determine the metabolite profiles in serum and urine upon exposure of mice to TCE, to aid in determining the metabolic response to TCE exposure and the contribution of DCA and TCA to TCE toxicity. C57BL/6 mice were administered TCE, TCA, or DCA, and urine and serum subjected to ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-ESI-QTOFMS)-based global metabolomics analysis. The ions were identified through searching metabolomics databases and by comparison with authentic standards, and quantitated using multiple reactions monitoring. Quantitative polymerase chain reaction of mRNA, biochemical analysis, and liver histology were also performed. TCE exposure resulted in a decrease in urine of metabolites involved in fatty acid metabolism, resulting from altered expression of PPARα target genes. TCE treatment also induced altered phospholipid homeostasis in serum, as revealed by increased serum lysophosphatidylcholine 18:0 and 18:1, and phosphatidylcholine metabolites. TCA administration revealed similar metabolite profiles in urine and serum upon TCE exposure, which correlated with a more robust induction of PPARα target gene expression associated with TCA than DCA treatment. These data show the metabolic response to TCE exposure and demonstrate that TCA is the major contributor to TCE-induced metabolite alterations observed in urine and serum.
Resumo:
Plant diversity drives changes in the soil microbial community which may result in alterations in ecosystem functions. However, the governing factors between the composition of soil microbial communities and plant diversity are not well understood. We investigated the impact of plant diversity (plant species richness and functional group richness) and plant functional group identity on soil microbial biomass and soil microbial community structure in experimental grassland ecosystems. Total microbial biomass and community structure were determined by phospholipid fatty acid (PLFA) analysis. The diversity gradient covered 1, 2, 4, 8, 16 and 60 plant species and 1, 2, 3 and 4 plant functional groups (grasses, legumes, small herbs and tall herbs). In May 2007, soil samples were taken from experimental plots and from nearby fields and meadows. Beside soil texture, plant species richness was the main driver of soil microbial biomass. Structural equation modeling revealed that the positive plant diversity effect was mainly mediated by higher leaf area index resulting in higher soil moisture in the top soil layer. The fungal-to-bacterial biomass ratio was positively affected by plant functional group richness and negatively by the presence of legumes. Bacteria were more closely related to abiotic differences caused by plant diversity, while fungi were more affected by plant-derived organic matter inputs. We found diverse plant communities promoted faster transition of soil microbial communities typical for arable land towards grassland communities. Although some mechanisms underlying the plant diversity effect on soil microorganisms could be identified, future studies have to determine plant traits shaping soil microbial community structure. We suspect differences in root traits among different plant communities, such as root turnover rates and chemical composition of root exudates, to structure soil microbial communities.
Resumo:
Memo is a conserved protein that was identified as an essential mediator of tumor cell motility induced by receptor tyrosine kinase activation. Here we show that Memo null mouse embryonic fibroblasts (MEFs) are impaired in PDGF-induced migration and this is due to a defect in sphingosine-1-phosphate (S1P) signaling. S1P is a bioactive phospholipid produced in response to multiple stimuli, which regulates many cellular processes. S1P is secreted to the extracellular milieu where it exerts its function by binding a family of G-protein coupled receptors (S1PRs), causing their activation in an autocrine or paracrine manner. The process, termed cell-autonomous S1PR signaling, plays a role in survival and migration. Indeed, PDGF uses cell-autonomous S1PR signaling to promote cell migration; we show here that this S1P pathway requires Memo. Using vascular endothelial cells (HUVECs) with Memo knock-down we show that their survival in conditions of serum-starvation is impaired. Furthermore, Memo loss in HUVECs causes a reduction of junctional VE-cadherin and an increase in sprout formation. Each of these phenotypes is rescued by S1P or S1P agonist addition, showing that Memo also plays an important role in cell-autonomous S1PR signaling in endothelial cells. We also produced conventional and endothelial cell-specific conditional Memo knock-out mouse strains and show that Memo is essential for embryonic development. Starting at E13.5 embryos of both strains display bleeding and other vascular problems, some of the phenotypes that have been described in mouse strains lacking S1PRs. The essential role of Memo in embryonic vascular development may be due in part to alterations in S1P signaling. Taken together our results show that Memo has a novel role in the S1P pathway and that Memo is needed to promote cell-autonomous S1PR activation.
Resumo:
The isostructural title compounds, {(C7H7N2)2[SnI4]}n, (1), and {(C7H5F2N2)2[SnI4]}n, (2), show a layered perovskite-type structure composed of anionic {[SnI4]2-}n sheets parallel to (100), which are decorated on both sides with templating benzimidazolium or 5,6-difluorobenzimidazolium cations, respectively. These planar organic heterocycles mainly form N-H...I hydrogen bonds to the terminal I atoms of the corner-sharing [SnI6] octahedra (point group symmetry 2) from the inorganic layer, but not to the bridging ones. This is in contrast to most of the reported structures of related compounds where ammonium cations are involved. Here hydrogen bonding to both types of iodine atoms and thereby a distortion of the inorganic layers to various extents is observed. For (1) and (2), all Sn-I-Sn angles are linear and no out-of-plane distortions of the inorganic layers occur, a fact of relevance in view of the material properties. The arrangement of the aromatic cations is mainly determined through the direction of the N-H...I hydrogen bonds. The coherence between organic bilayers along [100] is mainly achieved through van der Waals interactions.
Resumo:
The transition from the nonlactating to the lactating state represents a critical period for dairy cow lipid metabolism because body reserves have to be mobilized to meet the increasing energy requirements for the initiation of milk production. The purpose of this study was to provide a comprehensive overview on cholesterol homeostasis in transition dairy cows by assessing in parallel plasma, milk, and hepatic tissue for key factors of cholesterol metabolism, transport, and regulation. Blood samples and liver biopsies were taken from 50 multiparous Holstein dairy cows in wk 3 antepartum (a.p.), wk 1 postpartum (p.p.), wk 4 p.p., and wk 14 p.p. Milk sampling was performed in wk 1, 4, and 14 p.p. Blood and milk lipid concentrations [triglycerides (TG), cholesterol, and lipoproteins], enzyme activities (phospholipid transfer protein and lecithin:cholesterol acyltransferase) were analyzed using enzymatic assays. Hepatic gene expression patterns of 3-hydroxy-3-methylglutaryl-coenzyme A (HMGC) synthase 1 (HMGCS1) and HMGC reductase (HMGCR), sterol regulatory element-binding factor (SREBF)-1 and -2, microsomal triglyceride transfer protein (MTTP), ATP-binding cassette transporter (ABC) A1 and ABCG1, liver X receptor (LXR) α and peroxisome proliferator activated receptor (PPAR) α and γ were measured using quantitative RT-PCR. Plasma TG, cholesterol, and lipoprotein concentrations decreased from wk 3 a.p. to a minimum in wk 1 p.p., and then gradually increased until wk 14 p.p. Compared with wk 4 p.p., phospholipid transfer protein activity was increased in wk 1 p.p., whereas lecithin:cholesterol acyltransferase activity was lowest at this period. Total cholesterol concentration and mass, and cholesterol concentration in the milk fat fraction decreased from wk 1 p.p. to wk 4 p.p. Both total and milk fat cholesterol concentration were decreased in wk 4 p.p. compared with wk 1 and 14 p.p. The mRNA abundance of genes involved in cholesterol synthesis (SREBF-2, HMGCS1, and HMGCR) markedly increased from wk 3 a.p. to wk 1 p.p., whereas SREBF-1 was downregulated. The expression of ABCA1 increased from wk 3 a.p. to wk 1 p.p., whereas ABCG1 was increased in wk 14 p.p. compared with other time points. In conclusion, hepatic expression of genes involved in the biosynthesis of cholesterol as well as the ABCA1 transporter were upregulated at the onset of lactation, whereas plasma concentrations of total cholesterol, phospholipids, lipoprotein-cholesterol, and TG were at a minimum. Thus, at the gene expression level, the liver seems to react to the increased demand for cholesterol after parturition. Whether the low plasma cholesterol and TG levels are due to impaired hepatic export mechanisms or reflect an enhanced transfer of these compounds into the milk to provide essential nutrients for the newborn remains to be elucidated.
Resumo:
The selenoenzyme glutathione peroxidase 4 (Gpx4) is a major scavenger of phospholipid hydroperoxides. Although Gpx4 represents a key component of the reactive oxygen species-scavenging network, its relevance in the immune system is yet to be defined. Here, we investigated the importance of Gpx4 for physiological T cell responses by using T cell-specific Gpx4-deficient mice. Our results revealed that, despite normal thymic T cell development, CD8(+) T cells from T(ΔGpx4/ΔGpx4) mice had an intrinsic defect in maintaining homeostatic balance in the periphery. Moreover, both antigen-specific CD8(+) and CD4(+) T cells lacking Gpx4 failed to expand and to protect from acute lymphocytic choriomeningitis virus and Leishmania major parasite infections, which were rescued with diet supplementation of high dosage of vitamin E. Notably, depletion of the Gpx4 gene in the memory phase of viral infection did not affect T cell recall responses upon secondary infection. Ex vivo, Gpx4-deficient T cells rapidly accumulated membrane lipid peroxides and concomitantly underwent cell death driven by ferroptosis but not necroptosis. These studies unveil an essential role of Gpx4 for T cell immunity.
Resumo:
Arachidonic acid (5Z,8Z,11Z,14Z-eicosatetraenoic acid; C20:4) (arachidonate, AA) is a vital polyunsaturated omega-6 fatty acid (PUFA) without its presence the mammalian brain, muscles, and possibly other organs cannot develop or function [1] and [2]. AA fulfils numerous known and possibly yet unknown functions as integral part of mammalian phospholipid membranes and as free AA which also acts as a precursor of a variety of biologically active lipid mediators generally referred to as eicosanoids (e.g., prostaglandins, leukotrienes). A more recent class of eicosanoids is composed of the endogenous cannabinoids (endocannabinoids) 2-arachidonoyl glycerol (2-AG) and arachidonoyl ethanolamide (anandamide, AEA), which act on cannabinoid CB1 and CB2 receptors but also modulate ion channels and nuclear receptors [3] and [4]. In recent years, the role of endocannabinoids as prominent anti-inflammatory and neuromodulatory eicosanoids has been shown by numerous studies [5].
Resumo:
Atomic force microscopy (AFM) is a powerful imaging technique that allows recording topographical information of membrane proteins under near-physiological conditions. Remarkable results have been obtained on membrane proteins that were reconstituted into lipid bilayers. High-resolution AFM imaging of native disk membranes from vertebrate rod outer segments has unveiled the higher-order oligomeric state of the G protein-coupled receptor rhodopsin, which is highly expressed in disk membranes. Based on AFM imaging, it has been demonstrated that rhodopsin assembles in rows of dimers and paracrystals and that the rhodopsin dimer is the fundamental building block of higher-order structures.
Resumo:
The response of cholesterol metabolism to a negative energy balance (NEB) induced by feed restriction for 3 weeks starting at 100 days in milk (DIM) compared to the physiologically occurring NEB in week 1 postpartum (p.p.) was investigated in 50 dairy cows (25 control (CON) and 25 feed-restricted (RES)). Blood samples, liver biopsies and milk samples were taken in week 1 p.p., and in weeks 0 and 3 of feed restriction. Plasma concentrations of total cholesterol (C), phospholipids (PL), triglycerides (TAG), very low density lipoprotein-cholesterol (VLDL-C) and low density lipoprotein-cholesterol (LDL-C) increased in RES cows from week 0 to 3 during feed restriction and were higher in week 3 compared to CON cows. In contrast, during the physiologically occurring NEB in week 1 p.p., C, PL, TAG and lipoprotein concentrations were at a minimum. Plasma phospholipid transfer protein (PLTP) and lecithin:cholesterol acyltransferase (LCAT) activities did not differ between week 0 and 3 for both groups, whereas during NEB in week 1 p.p. PLTP activity was increased and LCAT activity was decreased. Milk C concentration was not affected by feed restriction in both groups, whereas milk C mass was decreased in week 3 for RES cows. In comparison, C concentration and mass in milk were elevated in week 1 p.p. Hepatic mRNA abundance of sterol regulatory element-binding factor-2 (SREBF-2), 3-hydroxy-3-methylglutaryl-coenzyme A synthase 1 (HMGCS1), 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), and ATP-binding cassette transporter (ABCA1) were similar in CON and RES cows during feed restriction, but were upregulated during NEB in week 1 p.p. compared to the non-lactating stage without a NEB. In conclusion, cholesterol metabolism in dairy cows is affected by nutrient and energy deficiency depending on the stage of lactation.
Resumo:
The observation that the membranes of flagella are enriched in sterols and sphingolipids has led to the hypothesis that flagella might be enriched in raft-forming lipids. However, a detailed lipidomic analysis of flagellar membranes is not available. Novel protocols to detach and isolate intact flagella from Trypanosoma brucei procyclic forms in combination with reverse-phase liquid chromatography high-resolution tandem mass spectrometry allowed us to determine the phospholipid composition of flagellar membranes relative to whole cells. Our analyses revealed that phosphatidylethanolamine, phosphatidylserine, ceramide and the sphingolipids inositol phosphorylceramide and sphingomyelin are enriched in flagella relative to whole cells. In contrast, phosphatidylcholine and phosphatidylinositol are strongly depleted in flagella. Within individual glycerophospholipid classes, we observed a preference for ether-type over diacyl-type molecular species in membranes of flagella. Our study provides direct evidence for a preferential presence of raft-forming phospholipids in flagellar membranes of T. brucei.
Resumo:
Homogenous detergent-solubilized NADPH-Cytochrome P-450 reductase was incorporated into microsomes and liposomes. This binding occurred spontaneously at temperatures between 4(DEGREES) and 37(DEGREES) and appeared to involve hydrophobic forces as the binding was not disrupted by 0.5 M sodium chloride. This exogenously-added reductase was active catalytically towards native cytochrome P-450, suggesting an association with the microsomal membrane similar to endogenous reductase. Homogeneous detergent-solubilized reductase was disaggregated by Renex-690 micelles, confirming the presence of a hydrophobic combining region on the enzyme. In contrast to these results, steapsin protease-solubilized reductase was incapable of microsomal attachment and did not interact with Renex-690 micelles. Detergent-solubilized reductase (76,500 daltons) was converted into a form with the electrophoretic mobility of steapsin protease-solubilized reductase (68,000 daltons) and a 12,500 dalton peptide (as determined by polyacrylamide-SDS gel electrophoresis) when the liposomal-incorporated enzyme was incubated with steapsin protease. The 68,000 dalton fragment thus obtained had properties identical with steapsin protease-solubilized reductase, i.e. it was catalytically active towards cytochrome c but inactive towards cytochrome P-450 and did not bind liposomes. The 12,500 dalton fragment remained associated with the liposomes when the digest was fractionated by gel filtration, suggesting that this is the segment of the enzyme which is embedded in the phospholipid bilayer. Thus, detergent-solubilized reductase appears to contain a soluble catalytic domain and a separate and separable membrane-binding domain. This latter domain is required for attaching the enzyme to the membrane and also to facilitate the catalytic interaction between the reductase and its native electron acceptor, cytochrome P-450. The membrane-binding segment of the reductase was isolated by preparative gel electrophoresis in SDS following its generation by proteolytic treatment of liposome-incorporated reductase. The peptide has a molecular weight of 6,400 as determined by gel filtration in 8 M guanidine hydrochloride and has an amino acid composition which is not especially hydrophobic. Following removal of SDS and dialysis out of 6 M urea, the membrane-binding peptide was unable to inhibit the activity of a reconstituted system containing purified reductase and cytochrome P-450. Moreover, when reductase and cytochrome P-450 were added to liposomes which contained the membrane-binding peptide, it was determined that mixed function oxidase activity was reconstituted as effectively as when vesicles without the membrane-binding peptide were used. Thus, the membrane-binding peptide was ineffective as an inhibitor of mixed function oxidase activity, suggesting perhaps that it facilitates catalysis by anchoring the catalytic domain of the reductase proximal to cytochrome P-450 (i.e. in the same mixed micelle) rather than through a specific interaction with cytochrome P-450. ^
Resumo:
A CDP-diacylglycerol dependent phosphatidylserine synthase was detected in three species of gram-positive bacilli, viz. Bacillus licheniformis, Bacillus subtilis and Bacillus megaterium; the enzyme in B. licheniformis was studied in detail. The subcellular distribution experiments in cell-free extracts of B. licheniformis using differential centrifugation, sucrose gradient centrifugation and detergent solubilization showed the phosphatidylserine synthase to be tightly associated with the membrane. The enzyme was shown to have an absolute requirement for divalent metal ion for activity with a strong preference for manganese. The enzyme activity was completely dependent upon the addition of CDP-diacylglycerol to the assay system; the role of the liponucleotide was rigorously shown to be that of phosphatidyl donor and not just a detergent-like stimulator. This enzyme was then solubilized from B. licheniformis membranes and purified to near homogeneity. The purification procedure consisted of CDP-diacylglycerol-Sepharose affinity chromatography followed by substrate elution from blue-dextran Sepharose. The purified preparation showed a single band with an apparent minimum molecular weight of 53,000 when subjected to SDS polyacrylamide gel electrophoresis. The preparation was free of any phosphatidylglycerophosphate synthase, CDP-diacylglycerol hydrolase and phosphatidylserine hydrolase activities. The utilization of substrates and formation of products occurred with the expected stoichiometry. Radioisotopic exchange patterns between related substrate and product pairs suggest a sequential BiBi reaction as opposed to the ping-pong mechanism exhibited by the well studied phosphatidylserine synthase of Escherichia coli. Proteolytic digestion of the enzyme yielded a smaller active form of the enzyme (41,000 daltons) which appears to be less prone to aggregation.^ This has been the first detailed study in a well-defined bacillus species of the enzyme catalyzing the CDP-diacylglycerol-dependent formation of phosphatidylserine; this reaction is the first committed step in the biosynthetic pathway to the major membrane component, phosphatidylethanolamine. Further study of this enzyme may lead to understanding of new mechanisms of phosphatidyl transfer and novel modes of control of phospholipid biosynthetic enzymes. ^
Resumo:
The Ser/Thr protein kinase C (PKC) isozyme family plays an important role in cell growth and differentiation and also contributes to key events in the development and progression of cancer. PKC isozymes are activated by phospholipid-dependent mechanisms, and they are also subject to oxidative activation and inactivation. Oxidative regulatory mechanisms are important in the governance of PKC isozyme action. While oxidative PKC activation involves phospho-tyrosine (P-Y) stabilization, the molecular mechanism(s) for oxidative PKC inactivation have not been defined. We previously reported that Thr → Cys peptide-substrate analogs inactivate several PKC isozymes including PKC-α via S-thiolation, i.e., by forming disulfides with PKC thiols. This inactivation mechanism is chemically analogous to protein S-glutathiolation, a post-translational modification that has been shown to oxidatively regulate several enzymes. To determine if PKC-α could be inactivated by S-glutathiolation, we employed the thiol-specific oxidant diamide (0.01–10mM) and 100μM glutathione (GSH). Diamide alone (0.1–5.0 mM) weakly inactivated PKC-α (<20%), and GSH alone had no effect on the isozyme activity. Marked potentiation of diamide-induced PKC-α inactivation (>90%) was achieved by 100μM GSH, resulting in full inactivation of the isozyme. Inactivation was reversed by DTT, consistent with a mechanism involving PKC-α S-glutathiolation. S-glutathiolation was demonstrated as DTT-reversible incorporation of [35S] GSH into PKC-α isozyme structure. These results indicate that a mild oxidative stimulus can inactivate purified PKC-α via S-glutathiolation. In addition, diamide treatment of metabolically labeled NIH3T3 cells induced potent PKC-α inactivation via isozyme [35S] S-thiolation. These results indicate that cellular PKC-α can be regulated via S-glutathiolation. ^