973 resultados para P-Systems Mapping
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): High-resolution proxy records of climate, such as varves, ice cores, and tree-rings, provide the opportunity for reconstructing climate on a year-by-year basis. In order to do so it is necessary to approximate the complex nonlinear response function of the natural recording system using linear statistical models. Three problems with this approach were discussed, and possible solutions were suggested. Examples were given from a reconstruction of Santa Barbara precipitation based on tree-ring records from Santa Barbara County.
Resumo:
The goal of this work is to examine the properties of recording mechanisms which are common to continuously recording high-resolution natural systems in which climatic signals are imprinted and preserved as proxy records. These systems produce seasonal structures as an indirect response to climatic variability over the annual cycle. We compare the proxy records from four different high-resolution systems: the Quelccaya ice cap of the Peruvian Andes; composite tree ring growth from southern California and the southwestern United States; and the marine varve sedimentation systems in the Santa Barbara basin (off California, United States) and in the Gulf of California, Mexico. An important focus of this work is to indicate how the interannual climatic signal is recorded in a variety of different natural systems with vastly different recording mechanisms and widely separated in space. These high-resolution records are the products of natural processes which should be comparable, to some degree, to human-engineered systems developed to transmit and record physical quantities. We therefore present a simple analogy of a data recording system as a heuristic model to provide some unifying concepts with which we may better understand the formation of the records. This analogy assumes special significance when we consider that natural proxy records are the principal means to extend our knowledge of climatic variability into the past, beyond the limits of instrumentally recorded data.
Resumo:
A realistic alternative to traditional technology development and transfer has been utilized by the International Center for Living Aquatic Resources Management (ICLARM) to integrate pond fish culture into low-input farming systems in Malawi. Resource mapping was used to assess farm resources and constraints and introduce the concept of integrated resource management (IRM), the synergistic movement of resources between and among farm and household enterprises. Farmer-led IRM research projects are conducted on-farm and monitored by researchers through direct observation and on-station simulation of constraints and management practices. Technology-adoption rates by farmers involved in a pilot activity was 65% compared to 0% by farmers exposed only to top-down extension approaches. Within two years of adoption, every participating farmer had transferred the technology to an average of four other farmers without the involvement of the extension services.
Resumo:
An experiment was conducted in farmers’ fields under Paikgacha thana, Khulna to study the suitability of integrated rice-cum-fish culture. Three treatments namely T1 (Puntius gonionotus), T2 (Puntius gonionotus and Cyprinus carpio) and T3 ( Cyprinus carpio) were included for the study each having three replicates. The fish were stocked at a density of 3750/ha in all the rice plots. The physicochemical parameters of water viz., water depth, temperature, dissolved oxygen, pH, salinity, nitrate and phosphate etc. recorded during the study period were found within optimum range. Of the two cultured species C. carpio attained the highest average individual weight (160g) and survival (81.06%). With respect to biomass and income, highest average fish production and net profit per hectare (306.74kg and Tk. 8177.91) were obtained in T2 and the lowest (184.17kg and Tk. 2049.41) obtained in T1 and a significant variation (p<0.05) in fish production was observed among the treatments while for rice production, it was insignificant. The cost benefit ratio of fish production found were 1:1.29, 1:2.14 and 1:1.90 for T1, T2 and T3, respectively.