902 resultados para Orthographic projection
Resumo:
This article describes the use of a projection spectrograph based on an overhead projector for use in classroom demonstrations on light polarization and optical activity. A simple adaptation on a previously developed apparatus allows illustrating several aspects of optical activity, such as circular and linear birefringence, including their wavelength dependence. Specifically, we use the projection spectrograph to demonstrate the optical activity of an aqueous solution of sugar (circular birefringence), of a quartz plate and of an overhead projector transparence film (linear birefringence). A historical survey about the optical activity discovery and the main principles involved is also presented.
Resumo:
This report describes a simple, inexpensive and highly effective instructional model based on the use of a tablet device to enable the real-time projection of the instructor's digitally handwritten annotations to teach chemistry in undergraduate courses. The projection of digital handwriting allows the instructor to build, present and adapt the class contents in a dynamic fashion and to save anything that is annotated or displayed on the screen for subsequent sharing with students after each session. This method avoids the loss of continuity and information that often occurs when instructors switch between electronic slides and white/chalk board during lessons. Students acknowledged that this methodology allows them to follow the instructor's cognitive process and the progressive development of contents during lectures as the most valuable aspect of the implemented instructional model.
Resumo:
This work is devoted to the development of numerical method to deal with convection diffusion dominated problem with reaction term, non - stiff chemical reaction and stiff chemical reaction. The technique is based on the unifying Eulerian - Lagrangian schemes (particle transport method) under the framework of operator splitting method. In the computational domain, the particle set is assigned to solve the convection reaction subproblem along the characteristic curves created by convective velocity. At each time step, convection, diffusion and reaction terms are solved separately by assuming that, each phenomenon occurs separately in a sequential fashion. Moreover, adaptivities and projection techniques are used to add particles in the regions of high gradients (steep fronts) and discontinuities and transfer a solution from particle set onto grid point respectively. The numerical results show that, the particle transport method has improved the solutions of CDR problems. Nevertheless, the method is time consumer when compared with other classical technique e.g., method of lines. Apart from this advantage, the particle transport method can be used to simulate problems that involve movingsteep/smooth fronts such as separation of two or more elements in the system.
Resumo:
In this thesis, a computer software for defining the geometry for a centrifugal compressor impeller is designed and implemented. The project is done under the supervision of Laboratory of Fluid Dynamics in Lappeenranta University of Technology. This thesis is similar to the thesis written by Tomi Putus (2009) in which a centrifugal compressor impeller flow channel is researched and commonly used design practices are reviewed. Putus wrote a computer software which can be used to define impeller’s three-dimensional geometry based on the basic geometrical dimensions given by a preliminary design. The software designed in this thesis is almost similar but it uses a different programming language (C++) and a different way to define the shape of the impeller meridional projection.
Resumo:
In this article I deal with time as a notion of epistemological content associated though with the notion of a subjective consciousness co-constitutive of physical reality. In this phenomenologically grounded approach I attempt to establish a 'metaphysical' aspect of time, within a strictly epistemological context, in the sense of an underlying absolute subjectivity which is non-objectifiable within objective temporality and thus non-susceptible of any ontological designation. My arguments stem, on the one hand, from a version of quantum-mechanical theory (History Projection Operator theory, HPO theory) in view of its formal treatment of two different aspects of time within a quantum context. The discrete, partial-ordering properties (the notions of before and after) and the dynamical-parameter properties reflected in the wave equations of motion. On the other hand, to strengthen my arguments for a transcendental factor of temporality, I attempt an interpretation of some relevant conclusions in the work of J. Eccles ([5]) and of certain results of experimental research of S. Deahaene et al. ([2]) and others.
Resumo:
Visual data mining (VDM) tools employ information visualization techniques in order to represent large amounts of high-dimensional data graphically and to involve the user in exploring data at different levels of detail. The users are looking for outliers, patterns and models – in the form of clusters, classes, trends, and relationships – in different categories of data, i.e., financial, business information, etc. The focus of this thesis is the evaluation of multidimensional visualization techniques, especially from the business user’s perspective. We address three research problems. The first problem is the evaluation of projection-based visualizations with respect to their effectiveness in preserving the original distances between data points and the clustering structure of the data. In this respect, we propose the use of existing clustering validity measures. We illustrate their usefulness in evaluating five visualization techniques: Principal Components Analysis (PCA), Sammon’s Mapping, Self-Organizing Map (SOM), Radial Coordinate Visualization and Star Coordinates. The second problem is concerned with evaluating different visualization techniques as to their effectiveness in visual data mining of business data. For this purpose, we propose an inquiry evaluation technique and conduct the evaluation of nine visualization techniques. The visualizations under evaluation are Multiple Line Graphs, Permutation Matrix, Survey Plot, Scatter Plot Matrix, Parallel Coordinates, Treemap, PCA, Sammon’s Mapping and the SOM. The third problem is the evaluation of quality of use of VDM tools. We provide a conceptual framework for evaluating the quality of use of VDM tools and apply it to the evaluation of the SOM. In the evaluation, we use an inquiry technique for which we developed a questionnaire based on the proposed framework. The contributions of the thesis consist of three new evaluation techniques and the results obtained by applying these evaluation techniques. The thesis provides a systematic approach to evaluation of various visualization techniques. In this respect, first, we performed and described the evaluations in a systematic way, highlighting the evaluation activities, and their inputs and outputs. Secondly, we integrated the evaluation studies in the broad framework of usability evaluation. The results of the evaluations are intended to help developers and researchers of visualization systems to select appropriate visualization techniques in specific situations. The results of the evaluations also contribute to the understanding of the strengths and limitations of the visualization techniques evaluated and further to the improvement of these techniques.
Resumo:
Little knowledge on initial behavior of native tree species in recovering landscapes in the Amazon is a current concern for expanding reforestation in the region. Thus, the aim of this study was to evaluate the establishment of native tree species that could be used for reforestation in area previously covered by a pasture of brachiaria grass (Brachiaria brizantha) destined for intensive cattle rasing in the State of Rondônia. For this, there were performed previous diagnostic of landscape changes and the election of tree species based on the ecological group information. Some of the critical macronutrients for plant growth were supplied in the holes to alleviate nutrient deficiencies. In addition, growth and survival parameters were taken to evaluate the initial behavior of species. Six native tree species planted with different combinations (10mx10m, 5mx5m and 3mx3m) had survival rate and growth (total height, girth stem and crown projection area) measured in different intervals: 6-month, 12-month and 24-month after planting. All the species presented survival rate over 90% at 24 months and comparable growth indices to other native species under similar situation and in the region. Overall, Schizolobium amazonicum (bandarra), the non-identified legume tree 1 (acácia grande) and Colubrina glandulosa (sóbrasil) averaged over 90% the highest girth stem growth all over the area. S. amazonicum and the non-identified legume tree 1 (acácia grande) presented the best results for height and canopy area growth parameters, respectively. The combination among native tree species from initial successional ecological groups and fertilizer was favorable to promote reforestation in the conditions of the study area in Rondônia.
Resumo:
ABSTRACT Inventory and prediction of cork harvest over time and space is important to forest managers who must plan and organize harvest logistics (transport, storage, etc.). Common field inventory methods including the stem density, diameter and height structure are costly and generally point (plot) based. Furthermore, the irregular horizontal structure of cork oak stands makes it difficult, if not impossible, to interpolate between points. We propose a new method to estimate cork production using digital multispectral aerial imagery. We study the spectral response of individual trees in visible and near infrared spectra and then correlate that response with cork production prior to harvest. We use ground measurements of individual trees production to evaluate the model’s predictive capacity. We propose 14 candidate variables to predict cork production based on crown size in combination with different NDVI index derivates. We use Akaike Information Criteria to choose the best among them. The best model is composed of combinations of different NDVI derivates that include red, green, and blue channels. The proposed model is 15% more accurate than a model that includes only a crown projection without any spectral information.
Resumo:
Avhandling visar att lindrig dyslexi påverkar läs- och skrivprestationer hos högpresterare. Särdrag träder tydligast fram i främmande språk och vid hantering av språkljud i krävande testuppgifter. Även om dyslexirelaterade problem vanligtvis är lindriga hos universitetsstudenter, är det centralt att dessa identifieras, eftersom de ses påverka akademiska prestationer. Avhandlingen lägger fram det första finlandssvenska dyslexitestet normerat för universitetsnivå (FS-DUVAN) och ger verktyg för utredning av läs- och skrivsvårigheter hos unga vuxna i Svenskfinland. Avhandlingen utforskar också språkspecifika särdrag av dyslexi hos högpresterande finlandssvenska universitetsstudenter i läs- och skrivuppgifter i svenska, finska och engelska. Detaljerade felanalyser visar att studenter med dyslexi speciellt har problem med kopplingar mellan språkljud och bokstav i det främmande språket engelska, som också i detta avseende är komplext. Resultat i komplexa kognitiva testuppgifter som förutsätter hantering av språkljud pekar på svikt i fonologisk processering, som betecknas som den huvudsakliga underliggande kognitiva nedsättningen vid utvecklingsbetingad dyslexi.
Resumo:
Objective: To correlate anatomical and functional changes of the oral cavity, pharynx and larynx to the severity of obstructive sleep apnea syndrome (OSAS). Methods : We conducted a cross-sectional study of 66 patients of both genders, aged between 21 and 59 years old with complaints of snoring and / or apnea. All underwent full clinical evaluation, including physical examination, nasolarybgoscopy and polisonography. We classified individuals into groups by the value of the apnea-hypopnea index (AHI), calculated measures of association and analyzed differences by the Kruskal-Wallis and chi-square tests. Results : all patients with obesity type 2 had OSAS. We found a relationship between the uvula projection during nasoendoscopy and OSAS (OR: 4.9; p-value: 0.008; CI: 1.25-22.9). In addition, there was a major strength of association between the circular shape of the pharynx and the presence of moderate or severe OSAS (OR: 9.4, p-value: 0.002), although the CI was wide (1.80-53.13). The septal deviation and lower turbinate hypertrophy were the most frequent nasal alterations, however unrelated to gravity. Nasal obstruction was four times more common in patients without daytime sleepiness. The other craniofacial anatomical changes were not predictors for the occurrence of OSAS. Conclusion : oral, pharyngeal and laryngeal disorders participate in the pathophysiology of OSAS. The completion of the endoscopic examination is of great value to the evaluation of these patients.
Resumo:
Primate order includes around 180 species. Morphological aspects of New World non-human primates (NHP) have been extensively investigated since last century. General commonsense describes oral cavity adaptations according to diet and feeding, dentition, tongue projection and head shape. Morphological appearance and dimension of the hard palate have been outstanding as interest in many species including man. Six young Saimiri sciureus hard palate were investigated. We measured the hard palate distance (HL), intercanine distance (ICD), intermolar distance (IMD), and interpremolar distance (IPD). Complete and incomplete palatine crests were quantified. We believe that better understanding of the mouth roof morphology will contribute to improve the management of captive animal's diet in order to re-introduce the animals in its habitat.
Resumo:
In this work, image based estimation methods, also known as direct methods, are studied which avoid feature extraction and matching completely. Cost functions use raw pixels as measurements and the goal is to produce precise 3D pose and structure estimates. The cost functions presented minimize the sensor error, because measurements are not transformed or modified. In photometric camera pose estimation, 3D rotation and translation parameters are estimated by minimizing a sequence of image based cost functions, which are non-linear due to perspective projection and lens distortion. In image based structure refinement, on the other hand, 3D structure is refined using a number of additional views and an image based cost metric. Image based estimation methods are particularly useful in conditions where the Lambertian assumption holds, and the 3D points have constant color despite viewing angle. The goal is to improve image based estimation methods, and to produce computationally efficient methods which can be accomodated into real-time applications. The developed image-based 3D pose and structure estimation methods are finally demonstrated in practise in indoor 3D reconstruction use, and in a live augmented reality application.
Resumo:
Global illumination algorithms are at the center of realistic image synthesis and account for non-trivial light transport and occlusion within scenes, such as indirect illumination, ambient occlusion, and environment lighting. Their computationally most difficult part is determining light source visibility at each visible scene point. Height fields, on the other hand, constitute an important special case of geometry and are mainly used to describe certain types of objects such as terrains and to map detailed geometry onto object surfaces. The geometry of an entire scene can also be approximated by treating the distance values of its camera projection as a screen-space height field. In order to shadow height fields from environment lights a horizon map is usually used to occlude incident light. We reduce the per-receiver time complexity of generating the horizon map on N N height fields from O(N) of the previous work to O(1) by using an algorithm that incrementally traverses the height field and reuses the information already gathered along the path of traversal. We also propose an accurate method to integrate the incident light within the limits given by the horizon map. Indirect illumination in height fields requires information about which other points are visible to each height field point. We present an algorithm to determine this intervisibility in a time complexity that matches the space complexity of the produced visibility information, which is in contrast to previous methods which scale in the height field size. As a result the amount of computation is reduced by two orders of magnitude in common use cases. Screen-space ambient obscurance methods approximate ambient obscurance from the depth bu er geometry and have been widely adopted by contemporary real-time applications. They work by sampling the screen-space geometry around each receiver point but have been previously limited to near- field effects because sampling a large radius quickly exceeds the render time budget. We present an algorithm that reduces the quadratic per-pixel complexity of previous methods to a linear complexity by line sweeping over the depth bu er and maintaining an internal representation of the processed geometry from which occluders can be efficiently queried. Another algorithm is presented to determine ambient obscurance from the entire depth bu er at each screen pixel. The algorithm scans the depth bu er in a quick pre-pass and locates important features in it, which are then used to evaluate the ambient obscurance integral accurately. We also propose an evaluation of the integral such that results within a few percent of the ray traced screen-space reference are obtained at real-time render times.
Resumo:
There is a dense serotonergic projection from nucleus raphe pallidus and nucleus raphe obscurus to the trigeminal motor nucleus and serotonin exerts a strong facilitatory action on the trigeminal motoneurons. Some serotonergic neurons in these caudal raphe nuclei increase their discharge during feeding. The objective of the present study was to investigate the possibility that the activity of these serotonergic neurons is related to activity of masticatory muscles. Cats were implanted with microelectrodes and gross electrodes. Caudal raphe single neuron activity, electrocorticographic activity, and splenius, digastric and masseter electromyographic activities were recorded during active behaviors (feeding and grooming), during quiet waking and during sleep. Seven presumed serotonergic neurons were identified. These neurons showed a long duration action potential (>2.0 ms), and discharged slowly (2-7 Hz) and very regularly (interspike interval coefficient of variation <0.3) during quiet waking. The activity of these neurons decreased remarkably during fast wave sleep (78-100%). Six of these neurons showed tonic changes in their activity positively related to digastric and/or masseter muscle activity but not to splenius muscle activity during waking. These data are consistent with the hypothesis that serotonergic neurons in the caudal raphe nuclei play an important role in the control of jaw movements
Resumo:
Nimeke- ja tekijätiedot nimiönkehyksissä