847 resultados para Orthogonal Representation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we investigate how a multilinear model can be used to represent human motion data. Based on technical modes (referring to degrees of freedom and number of frames) and natural modes that typically appear in the context of a motion capture session (referring to actor, style, and repetition), the motion data is encoded in form of a high-order tensor. This tensor is then reduced by using N-mode singular value decomposition. Our experiments show that the reduced model approximates the original motion better then previously introduced PCA-based approaches. Furthermore, we discuss how the tensor representation may be used as a valuable tool for the synthesis of new motions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed an assay for single strand DNA or RNA detection which is based on the homo-DNA templated Staudinger reduction of the profluorophore rhodamine-azide. The assay is based on a three component system, consisting of a homo-DNA/DNA hybrid probe, a set of homo-DNA reporter strands and the target DNA or RNA. We present two different formats of the assay (Omega probe and linear probe) in which the linear probe was found to perform best with catalytic turnover of the reporter strands (TON: 8) and a match/mismatch discrimination of up to 19. The advantage of this system is that the reporting (homo-DNA) and sensing (DNA) domain are decoupled from each other since the two pairing systems are bioorthogonal. This allows independent optimization of either domain which may lead to higher selectivity in in vivo imaging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Frequency-transformed EEG resting data has been widely used to describe normal and abnormal brain functional states as function of the spectral power in different frequency bands. This has yielded a series of clinically relevant findings. However, by transforming the EEG into the frequency domain, the initially excellent time resolution of time-domain EEG is lost. The topographic time-frequency decomposition is a novel computerized EEG analysis method that combines previously available techniques from time-domain spatial EEG analysis and time-frequency decomposition of single-channel time series. It yields a new, physiologically and statistically plausible topographic time-frequency representation of human multichannel EEG. The original EEG is accounted by the coefficients of a large set of user defined EEG like time-series, which are optimized for maximal spatial smoothness and minimal norm. These coefficients are then reduced to a small number of model scalp field configurations, which vary in intensity as a function of time and frequency. The result is thus a small number of EEG field configurations, each with a corresponding time-frequency (Wigner) plot. The method has several advantages: It does not assume that the data is composed of orthogonal elements, it does not assume stationarity, it produces topographical maps and it allows to include user-defined, specific EEG elements, such as spike and wave patterns. After a formal introduction of the method, several examples are given, which include artificial data and multichannel EEG during different physiological and pathological conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The African great lakes are of utmost importance for the local economy (fishing), as well as being essential to the survival of the local people. During the past decades, these lakes experienced fast changes in ecosystem structure and functioning, and their future evolution is a major concern. In this study, for the first time a set of one-dimensional lake models are evaluated for Lake Kivu (2.28°S; 28.98°E), East Africa. The unique limnology of this meromictic lake, with the importance of salinity and subsurface springs in a tropical high-altitude climate, presents a worthy challenge to the seven models involved in the Lake Model Intercomparison Project (LakeMIP). Meteorological observations from two automatic weather stations are used to drive the models, whereas a unique dataset, containing over 150 temperature profiles recorded since 2002, is used to assess the model’s performance. Simulations are performed over the freshwater layer only (60 m) and over the average lake depth (240 m), since salinity increases with depth below 60 m in Lake Kivu and some lake models do not account for the influence of salinity upon lake stratification. All models are able to reproduce the mixing seasonality in Lake Kivu, as well as the magnitude and seasonal cycle of the lake enthalpy change. Differences between the models can be ascribed to variations in the treatment of the radiative forcing and the computation of the turbulent heat fluxes. Fluctuations in wind velocity and solar radiation explain inter-annual variability of observed water column temperatures. The good agreement between the deep simulations and the observed meromictic stratification also shows that a subset of models is able to account for the salinity- and geothermal-induced effects upon deep-water stratification. Finally, based on the strengths and weaknesses discerned in this study, an informed choice of a one-dimensional lake model for a given research purpose becomes possible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Given a reproducing kernel Hilbert space (H,〈.,.〉)(H,〈.,.〉) of real-valued functions and a suitable measure μμ over the source space D⊂RD⊂R, we decompose HH as the sum of a subspace of centered functions for μμ and its orthogonal in HH. This decomposition leads to a special case of ANOVA kernels, for which the functional ANOVA representation of the best predictor can be elegantly derived, either in an interpolation or regularization framework. The proposed kernels appear to be particularly convenient for analyzing the effect of each (group of) variable(s) and computing sensitivity indices without recursivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents problems arising from the lack of standardized methods for recording skeletal remains. Using practical examples it is shown how preservation and representation of bones can distort observations and how this can be reduced by systematic data acquisition.