951 resultados para Organized labor
Resumo:
This descriptive study about children and adolescents artistic labor verifies the applicable legislation, in Brazil, regarding the participation of children and adolescents in the entertainment industry and in advertising campaigns, as well as the judicial processes about the theme known by the Brazilian Superior Court of Justice up to October, 2010. The results permit to conclude that, due to the lack of specific regulation and general rule of child labor prohibition, the restrictions that tend to protect the health and security of children and adolescents that act in the artistic niche (television, advertising, fashion, movies etc.) have been, in Brazil, at subjective criteria of the judges and, in many cases, in the hands of producers themselves. Brief considerations on how other countries regulate the theme are also presented (the USA, Portugal and Argentina).
Resumo:
The hypothalamus is a forebrain structure critically involved in the organization of defensive responses to aversive stimuli. Gamma-aminobutyric acid (GABA)ergic dysfunction in dorsomedial and posterior hypothalamic nuclei is implicated in the origin of panic-like defensive behavior, as well as in pain modulation. The present study was conducted to test the difference between these two hypothalamic nuclei regarding defensive and antinociceptive mechanisms. Thus, the GABA A antagonist bicuculline (40 ng/0.2 µL) or saline (0.9% NaCl) was microinjected into the dorsomedial or posterior hypothalamus in independent groups. Innate fear-induced responses characterized by defensive attention, defensive immobility and elaborate escape behavior were evoked by hypothalamic blockade of GABA A receptors. Fear-induced defensive behavior organized by the posterior hypothalamus was more intense than that organized by dorsomedial hypothalamic nuclei. Escape behavior elicited by GABA A receptor blockade in both the dorsomedial and posterior hypothalamus was followed by an increase in nociceptive threshold. Interestingly, there was no difference in the intensity or in the duration of fear-induced antinociception shown by each hypothalamic division presently investigated. The present study showed that GABAergic dysfunction in nuclei of both the dorsomedial and posterior hypothalamus elicit panic attack-like defensive responses followed by fear-induced antinociception, although the innate fear-induced behavior originates differently in the posterior hypothalamus in comparison to the activity of medial hypothalamic subdivisions.
Resumo:
The scope of this paper is to describe the work of manual sugarcane harvesters, assessing the nutritional behavior and body composition between the beginning and the end of the harvest. A descriptive longitudinal study was made of harvesters in Piracicaba, São Paulo, Brazil, who answered a socio-demographic questionnaire and authorized measurement of Body Mass Index, Body Fat Percentage and Arm Muscle Circumference at three stages. Creatine kinase on the skeletal isoform, C-reactive protein and plasma urea were measured at the end of the harvest. Thirty male migrant harvesters with ages ranging from 18 to 44 from the Northeast (Ceará) were assessed over a nine-month period. The workers suffered significant body fat and weight loss in the first half of the harvest. Eighteen workers had abnormal levels of creatine kinase and four - out of 24 who had donated blood - had altered urea levels. Sugarcane harvesting work causes weight and body fat loss and gains in the lean body mass index, which suffers wear-out when working on consecutive harvests. It can also cause changes in biochemical markers of chronic systemic inflammation. Further studies will make it possible to comprehend the relationships between stress, wear-out, labor longevity and health in sugarcane harvesting.
Resumo:
A prevalent claim is that we are in knowledge economy. When we talk about knowledge economy, we generally mean the concept of “Knowledge-based economy” indicating the use of knowledge and technologies to produce economic benefits. Hence knowledge is both tool and raw material (people’s skill) for producing some kind of product or service. In this kind of environment economic organization is undergoing several changes. For example authority relations are less important, legal and ownership-based definitions of the boundaries of the firm are becoming irrelevant and there are only few constraints on the set of coordination mechanisms. Hence what characterises a knowledge economy is the growing importance of human capital in productive processes (Foss, 2005) and the increasing knowledge intensity of jobs (Hodgson, 1999). Economic processes are also highly intertwined with social processes: they are likely to be informal and reciprocal rather than formal and negotiated. Another important point is also the problem of the division of labor: as economic activity becomes mainly intellectual and requires the integration of specific and idiosyncratic skills, the task of dividing the job and assigning it to the most appropriate individuals becomes arduous, a “supervisory problem” (Hogdson, 1999) emerges and traditional hierarchical control may result increasingly ineffective. Not only specificity of know how makes it awkward to monitor the execution of tasks, more importantly, top-down integration of skills may be difficult because ‘the nominal supervisors will not know the best way of doing the job – or even the precise purpose of the specialist job itself – and the worker will know better’ (Hogdson,1999). We, therefore, expect that the organization of the economic activity of specialists should be, at least partially, self-organized. The aim of this thesis is to bridge studies from computer science and in particular from Peer-to-Peer Networks (P2P) to organization theories. We think that the P2P paradigm well fits with organization problems related to all those situation in which a central authority is not possible. We believe that P2P Networks show a number of characteristics similar to firms working in a knowledge-based economy and hence that the methodology used for studying P2P Networks can be applied to organization studies. Three are the main characteristics we think P2P have in common with firms involved in knowledge economy: - Decentralization: in a pure P2P system every peer is an equal participant, there is no central authority governing the actions of the single peers; - Cost of ownership: P2P computing implies shared ownership reducing the cost of owing the systems and the content, and the cost of maintaining them; - Self-Organization: it refers to the process in a system leading to the emergence of global order within the system without the presence of another system dictating this order. These characteristics are present also in the kind of firm that we try to address and that’ why we have shifted the techniques we adopted for studies in computer science (Marcozzi et al., 2005; Hales et al., 2007 [39]) to management science.
Resumo:
The common thread of this thesis is the will of investigating properties and behavior of assemblies. Groups of objects display peculiar properties, which can be very far from the simple sum of respective components’ properties. This is truer, the smaller is inter-objects distance, i.e. the higher is their density, and the smaller is the container size. “Confinement” is in fact a key concept in many topics explored and here reported. It can be conceived as a spatial limitation, that yet gives origin to unexpected processes and phenomena based on inter-objects communication. Such phenomena eventually result in “non-linear properties”, responsible for the low predictability of large assemblies. Chapter 1 provides two insights on surface chemistry, namely (i) on a supramolecular assembly based on orthogonal forces, and (ii) on selective and sensitive fluorescent sensing in thin polymeric film. In chapters 2 to 4 confinement of molecules plays a major role. Most of the work focuses on FRET within core-shell nanoparticles, investigated both through a simulation model and through experiments. Exciting results of great applicative interest are drawn, such as a method of tuning emission wavelength at constant excitation, and a way of overcoming self-quenching processes by setting up a competitive deactivation channel. We envisage applications of these materials as labels for multiplexing analysis, and in all fields of fluorescence imaging, where brightness coupled with biocompatibility and water solubility is required. Adducts of nanoparticles and molecular photoswitches are investigated in the context of superresolution techniques for fluorescence microscopy. In chapter 5 a method is proposed to prepare a library of functionalized Pluronic F127, which gives access to a twofold “smart” nanomaterial, namely both (i)luminescent and (ii)surface-functionalized SCSSNPs. Focus shifts in chapter 6 to confinement effects in an upper size scale. Moving from nanometers to micrometers, we investigate the interplay between microparticles flowing in microchannels where a constriction affects at very long ranges structure and dynamics of the colloidal paste.
Trade policy, government and non-State regulation of international labor and environmental standards
Resumo:
A nanostructured thin film is a thin material layer, usually supported by a (solid) substrate, which possesses subdomains with characteristic nanoscale dimensions (10 ~ 100 nm) that are differentiated by their material properties. Such films have captured vast research interest because the dimensions and the morphology of the nanostructure introduce new possibilities to manipulating chemical and physical properties not found in bulk materials. Block copolymer (BCP) self-assembly, and anodization to form nanoporous anodic aluminium oxide (AAO), are two different methods for generating nanostructures by self-organization. Using poly(styrene-block-methyl methacrylate) (PS-b-PMMA) nanopatterned thin films, it is demonstrated that these polymer nanopatterns can be used to study the influence of nanoscale features on protein-surface interactions. Moreover, a method for the directed assembly of adsorbed protein nanoarrays, based on the nanoscale juxtaposition of the BCP surface domains, is also demonstrated. Studies on protein-nanopattern interactions may inform the design of biomaterials, biosensors, and relevant cell-surface experiments that make use of nanoscale structures. In addition, PS-b-PMMA and AAO thin films are also demonstrated for use as optical waveguides at visible wavelengths. Due to the sub-wavelength nature of the nanostructures, scattering losses are minimized, and the optical response is amenable to analysis with effective medium theory (EMT). Optical waveguide measurements and EMT analysis of the films’ optical anisotropy enabled the in situ characterization of the PS-b-PMMA nanostructure, and a variety of surface processes within the nanoporous AAO involving (bio)macromolecules at high sensitivity.
Resumo:
Sowohl in der Natur als auch in der Industrie existieren thermisch induzierte Strömungen. Von Interesse für diese Forschungsarbeit sind dabei die Konvektionen im Erdmantel sowie in den Glasschmelzwannen. Der dort stattfindende Materialtransport resultiert aus Unterschieden in der Dichte, der Temperatur und der chemischen Konzentration innerhalb des konvektierenden Materials. Um das Verständnis für die ablaufenden Prozesse zu verbessern, werden von zahlreichen Forschergruppen numerische Modellierungen durchgeführt. Die Verifikation der dafür verwendeten Algorithmen erfolgt meist über die Analyse von Laborexperimenten. Im Vordergrund dieser Forschungsarbeit steht die Entwicklung einer Methode zur Bestimmung der dreidimensionalen Temperaturverteilung für die Untersuchung von thermisch induzierten Strömungen in einem Versuchsbecken. Eine direkte Temperaturmessung im Inneren des Versuchsmaterials bzw. der Glasschmelze beeinflusst allerdings das Strömungsverhalten. Deshalb wird die geodynamisch störungsfrei arbeitende Impedanztomographie verwendet. Die Grundlage dieser Methode bildet der erweiterte Arrhenius-Zusammenhang zwischen Temperatur und spezifischer elektrischer Leitfähigkeit. Während der Laborexperimente wird ein zähflüssiges Polyethylenglykol-Wasser-Gemisch in einem Becken von unten her erhitzt. Die auf diese Weise generierten Strömungen stellen unter Berücksichtigung der Skalierung ein Analogon sowohl zu dem Erdmantel als auch zu den Schmelzwannen dar. Über mehrere Elektroden, die an den Beckenwänden installiert sind, erfolgen die geoelektrischen Messungen. Nach der sich anschließenden dreidimensionalen Inversion der elektrischen Widerstände liegt das Modell mit der Verteilung der spezifischen elektrischen Leitfähigkeit im Inneren des Versuchsbeckens vor. Diese wird mittels der erweiterten Arrhenius-Formel in eine Temperaturverteilung umgerechnet. Zum Nachweis der Eignung dieser Methode für die nichtinvasive Bestimmung der dreidimensionalen Temperaturverteilung wurden mittels mehrerer Thermoelemente an den Beckenwänden zusätzlich direkte Temperaturmessungen durchgeführt und die Werte miteinander verglichen. Im Wesentlichen sind die Innentemperaturen gut rekonstruierbar, wobei die erreichte Messgenauigkeit von der räumlichen und zeitlichen Auflösung der Gleichstromgeoelektrik abhängt.
Resumo:
Nanotechnology entails the manufacturing and manipulation of matter at length scales ranging from single atoms to micron-sized objects. The ability to address properties on the biologically-relevant nanometer scale has made nanotechnology attractive for Nanomedicine. This is perceived as a great opportunity in healthcare especially in diagnostics, therapeutics and more in general to develop personalized medicine. Nanomedicine has the potential to enable early detection and prevention, and to improve diagnosis, mass screening, treatment and follow-up of many diseases. From the biological standpoint, nanomaterials match the typical size of naturally occurring functional units or components of living organisms and, for this reason, enable more effective interaction with biological systems. Nanomaterials have the potential to influence the functionality and cell fate in the regeneration of organs and tissues. To this aim, nanotechnology provides an arsenal of techniques for intervening, fabricate, and modulate the environment where cells live and function. Unconventional micro- and nano-fabrication techniques allow patterning biomolecules and biocompatible materials down to the level of a few nanometer feature size. Patterning is not simply a deterministic placement of a material; in a more extended acception it allows a controlled fabrication of structures and gradients of different nature. Gradients are emerging as one of the key factors guiding cell adhesion, proliferation, migration and even differentiation in the case of stem cells. The main goal of this thesis has been to devise a nanotechnology-based strategy and tools to spatially and temporally control biologically-relevant phenomena in-vitro which are important in some fields of medical research.