878 resultados para Optical-optical conversion efficiency
Resumo:
We present two novel 1XN dynamic optical couplers that are based on Dammann gratings to achieve dynamic optical coupled technology. One is presented by employing a specially designed Dammann grating that consists of the Dammann-grating area and the blank area. The other is developed by using two complementary even-numbered Dammann gratings. The couplers can achieve the function conversion between a beam splitter and a combiner according to the modulation of the gratings. We have experimentally demonstrated 1X8 dynamic optical couplers at the wavelength of 1550 nm. The experimental results and the analyses are reported in detail.
Resumo:
Coupling a single-mode laser diode with 200 mW to a single-mode fiber (SMF) through an orthonormal aspherical cylindrical lens and a GRIN lens for the intersatellite optical communication system is proposed and demonstrated. We experimentally studied how the coupling efficiency changes with the SMF's position displacement and axial angle variation, and obtained 80 mW output power at the end of the SMF, which shows that the coupling units have satisfied the designed request. (c) 2007 Elsevier GmbH. All rights reserved.
Resumo:
By employing a uniformly compact side-pumping system, a high-energy electro-optical Q-switched Nd:YAG ceramic laser has been demonstrated. With 420 W quasi-cw laser-diode-array pumping at 808 ran and a 100 Hz modulating repetition rate, 50 mJ output energy at 1064 nm was obtained with 10 ns pulse width, 5 W average output power, and 5 MW peak power. Its corresponding slope efficiency was 29.8%. The laser system operated quite stably and no saturation phenomena have been observed, which means higher output energy could be expected. Laser parameters between ceramic and single-crystal Nd:YAG lasers have been compared, and pulse characteristics of Nd:YAG ceramic with different repetition rate have been investigated in detail. The still-evolving Nd:YAG ceramics are potential super excellent media for high-energy laser applications. (C) 2007 Optical Society of America.
Resumo:
Er3+-doped halide modified tellurite glasses were synthesized by conventional melting and quenching method. The Judd-Ofelt analysis was performed on the absorption spectra and the transition probabilities, excited state lifetimes, and the branching ratios were calculated and discussed. The intense infrared and visible fluorescence spectra under 980 nm excitation were obtained. Strong upconversion signal was observed at pumping power as low as 30 mW in the glasses with halide ions. The upconversion mechanisms and power dependent intensities were discussed, which showed two-photon process are involved for the green and red emissions. The decay times of the emitting states and the corresponding quantum efficiency were determined and explained. (C) 2004 American Institute of Physics.
Resumo:
This paper reports on the optical spectroscopic properties and thermal stability of Er3+-doped TeO2-BaO (Li2O,NaO)-La2O3 glasses for developing 1.5-mu m fiber amplifiers. Upon excitation at 977 nm laser diode, an intense 1.53-mu m infrared fluorescence has been observed with a broad full width at half maximum (FWHM) of about 60 nm for the Er3+-doped TeO2-BaO (Li2O, Na2O)-La2O3 glass with 10 mol% of BaO. The calculated fluorescence lifetime and the emission cross-sections of the 1.53-mu m transition are 2.91 ms and similar to 9.97 x 10(-21) cm(2), respectively. It is noted that the gain bandwidth, a, x FWHM, of the TeO2-BaO-La2O3Er2O3 glass is about 600, which is significantly higher than that in silicate and phosphate glasses. Meanwhile, it is interesting to note that the TeO2-BaO-La2O3-Er2O3 glass has shown a high glass thermal stability and good infrared transmittance. As a result, TeO2-BaO (Li2O, Na2O)-La2O3 glass with 10 mol% of BaO has been considered to be more useful as a host for broadband optical fiber amplifier. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Yb3Al5O12 single crystal has been grown by Czochralski (CZ) method. The absorption spectrum was investigated at low temperature and the electronic energy levels for F-2(5/2) multiplet of Yb3+ in YbAG was proposed. The up-conversion emission of the crystal under 940 nm diode pumping and the X-ray excited luminescence (XEL) features of the crystal were also studied. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Multi-layer dielectric (MLD) gratings for pulse compressors in high-energy laser systems should provide high diffraction efficiency as well as high laser induced damage thresholds (LIDT). Nonuniform optical near-field distribution is one of the important factors to limit their damage resistant capabilities. Electric field distributions in the gratings and multi-layer film region are analyzed by using Fourier modal method. Optimization of peak electric field in the gratings ridge is performed with a merit function, including both diffraction efficiency and electric field enhancement when the top layer material is HfO2 and SiO2, respectively. A set of optimized gratings parameters is obtained for each structure, which reduce the peak electric field within the gratings ridge to being respective 1.39 and 1.84 times the value of incident light respectively. Finally, we also discuss the effects of gratings refractive index, gratings sidewall angle and incident angle on peak electric field in the gratings ridge. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Al2O3/SiO2 films have been prepared by electron-beam evaporation as ultraviolet (UV) antireflection coatings on 4H-SiC substrates and annealed at different temperatures. The films were characterized by reflection spectra, ellipsometer system, atomic force microscopy (AFM), X-ray diffraction (XRD) and Xray photoelectron spectroscopy (XPS), respectively. As the annealing temperature increased, the minimum reflectance of the films moved to the shorter wavelength for the variation of refractive indices and the reduction of film thicknesses. The surface grains appeared to get larger in size and the root mean square (RMS) roughness of the annealed films increased with the annealing temperature but was less than that of the as-deposited. The Al2O3/SiO2 films maintained amorphous in microstructure with the increase of the temperature. Meanwhile, the transition and diffusion in film component were found in XPS measurement. These results provided the important references for Al2O3/SiO2 films annealed at reasonable temperatures and prepared as fine anti-reflection coatings on 4H-SiC-based UV optoelectronic devices. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
We report an InGaAsP/InP MQW phase modulator operating over the entire 1.55μm fiber band with high phase modulation efficiency and low loss modulation. The spectral dependence of the electro-refraction in a MQW structure is measured for the first time.
Resumo:
Interferometric Optical Wavelength Converters (IOWCs) provide wavelength conversion functionality at high bit rates, and give low chip and enhanced extinction ratio compared with Cross-Gain wavelength converters. In paper, a numerical simulation is conducted to assess the noise performance of IOWC and its potential for cascading. The details of the experiment and the results obtained are presented.
Resumo:
The fastest ever 11.25Gb/s real-time FPGA-based optical orthogonal frequency division multiplexing (OOFDM) transceivers utilizing 64-QAM encoding/decoding and significantly improved variable power loading are experimentally demonstrated, for the first time, incorporating advanced functionalities of on-line performance monitoring, live system parameter optimization and channel estimation. Real-time end-to-end transmission of an 11.25Gb/s 64-QAM-encoded OOFDM signal with a high electrical spectral efficiency of 5.625bit/s/Hz over 25km of standard and MetroCor single-mode fibres is successfully achieved with respective power penalties of 0.3dB and -0.2dB at a BER of 1.0 x 10(-3) in a directly modulated DFB laser-based intensity modulation and direct detection system without in-line optical amplification and chromatic dispersion compensation. The impacts of variable power loading as well as electrical and optical components on the transmission performance of the demonstrated transceivers are experimentally explored in detail. In addition, numerical simulations also show that variable power loading is an extremely effective means of escalating system performance to its maximum potential.
Resumo:
We investigate the use of liquid crystal (LC) adaptive optics elements to provide full 3 dimensional particle control in an optical tweezer. These devices are suitable for single controllable traps, and so are less versatile than many of the competing technologies which can be used to control multiple particles. However, they have the advantages of simplicity and light efficiency. Furthermore, compared to binary holographic optical traps they have increased positional accuracy. The transmissive LC devices could be retro-fitted to an existing microscope system. An adaptive modal LC lens is used to vary the z-focal position over a range of up to 100 μm and an adaptive LC beam-steering device is used to deflect the beam (and trapped particle) in the x-y plane within an available radius of 10 μm. Furthermore, by modifying the polarisation of the incident light, these LC components also offer the opportunity for the creation of dual optical traps of controllable depth and separation. © 2006 Optical Society of America.
Resumo:
Liquid crystal (LC) adaptive optical elements are described, which provide an alternative to existing micropositioning technologies in optical tweezing. A full description of this work is given in [1]. An adaptive LC prism supplies tip/tilt to the phase profile of the trapping beam, giving rise to an available steering radius within the x-y plane of 10 μm. Additionally, a modally addressed adaptive LC lens provides defocus, offering a z-focal range for the trapping site of 100 μm. The result is full three-dimensional positional control of trapped particle(s) using a simple and wholly electronic control system. Compared to competing technologies, these devices provide a lower degree of controllability, but have the advantage of simplicity, cost and light efficiency. Furthermore, due to their birefringence, LC elements offer the opportunity of the creation of dual optical traps with controllable depth and separation.
Resumo:
A technique of cross talk mitigation developed for liquid crystal on silicon spatial light modulator based optical interconnects and fiber switches is demonstrated. By purposefully introducing an appropriate aberration into the system, it is possible to reduce the worst-case cross talk by over 10 dB compared to conventional Fourier-transform-based designs. Tests at a wavelength of 674nm validate this approach, and show that there is no noticeable reduction in diffraction efficiency. A 27% spot increase in beam diameter is observed, which is predicted to reduce at longer datacom and telecom wavelengths. © 2012 Optical Society of America.
Resumo:
We use laser beams with radial and azimuthal polarization to optically trap carbon nanotubes. We measure force constants and trap parameters as a function of power showing improved axial trapping efficiency with respect to linearly polarized beams. The analysis of the thermal fluctuations highlights a significant change in the optical trapping potential when using cylindrical vector beams. This enables the use of polarization states to shape optical traps according to the particle geometry, as well as paving the way to nanoprobe-based photonic force microscopy with increased performance compared to a standard linearly polarized configuration. © 2012 Optical Society of America.