951 resultados para Oceanic Thermocline


Relevância:

10.00% 10.00%

Publicador:

Resumo:

New stratigraphic data along a profile from the Helvetic Gotthard massif to the remnants of the North Penninic basin in eastern Ticino and Graubunden are presented. The stratigraphic record together with existing geochemical and structural data, motivate a new interpretation of the fossil European distal margin. We introduce a new group of Triassic facies, the North-Penninic-Triassic (NPT), which is characterised by the Ladinian ``dolomie bicolori''. The NPT was located in-between the Brianconnais carbonate platform and the Helvetic lands. The observed horizontal transition, coupled with the stratigraphic superposition of a Helvetic Liassic on a Briaconnais Triassic in the Luzzone-Terri nappe, links, prior to Jurassic rifting, the Brianconnais paleogeographic domain at the Helvetic margin, south of the Gotthard. Our observations suggest that the Jurassic rifting separated the Brianconnais domain from the Helvetic margin by complex and protracted extension. The syn-rift stratigraphic record in the Adula nappe and surroundings suggests the presence of a diffuse rising area with only moderately subsiding basins above a thinned continental and proto-oceanic crust. Strong subsidence occurred in a second phase following protracted extension and the resulting delamination of the rising area. The stratigraphic coherency in the Adula's Mesozoic questions the idea of a lithospheric m lange in the eclogitic Adula nappe, which is more likely to be a coherent alpine tectonic unit. The structural and stratigraphic observations in the Piz Terri-Lunschania zone suggest the activity of syn-rift detachments. During the alpine collision these faults are reactivated (and inverted) and played a major role in allowing the Adula subduction, the ``Penninic Thrust'' above it and in creating the structural complexity of the Central Alps. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents field, petrographic-structural and geochemical data on spinet and plagioclase peridotites from the southern domain of the Lanzo ophiolitic peridotite massif (Western Alps). Spinet lherzolites, harzburgites and dunites crop out at Mt. Arpone and Mt. Musine. Field evidence indicates that pristine porphyroclastic spinet lherzolites are transformed to coarse granular spinet harzburgites, which are in turn overprinted by plagioclase peridotites, while strongly depleted spinet harzburgite and dunite bands and bodies replace the plagioclase peridotites. On the northern flank of Mt. Arpone, deformed, porphyroclastic (lithospheric) lherzolites, with diffuse pyroxenite banding, represent the oldest spinel-facies rocks. They show microstructures of a composite subsolidus evolution, suggesting provenance from deeper (asthenospheric) mantle levels and accretion to the lithosphere. These protoliths are locally transformed to coarse granular (reactive) spinet harzburgites and dunites, which show textures reminiscent of melt/rock reaction and geochemical characteristics suggesting that they are products of peridotite interaction with reactively percolating melts. Geochemical data and modelling suggest that <1-5% fractional melting of spinel-facies DMM produced the injected melts. Plagioclase peridotites are hybrid rocks resulting from pre-existing spinet peridotites and variable enrichment of plagioclase and micro-gabbroic material by percolating melts. The impregnating melts attained silica-saturation, as testified by widespread orthopyroxene replacement of olivine, during open system migration in the lithosphere. At Mt. Musine, coarse granular spinet harzburgite and dunite bodies replace the plagioclase peridotites. Most of these replacive, refractory peridotites have interstitial magmatic clinopyroxene with trace element compositions in equilibrium with MORB, while some Cpx have REE-depleted patterns suggesting transient geochemical features of the migrating MORB-type melts, acquired by interaction with the ambient plagioclase peridotite. These replacive spinet harzburgite and dunite bodies are interpreted as channels exploited for focused and reactive migration of silica-undersaturated melts with aggregate MORB compositions. Such melts were unrelated to the silica-saturated melts that refertilized the pre-existing plagioclase peridotites. Finally, MORB melt migration occurred along open fractures, now recorded as gabbroic dikes. Our data document the complexity of rock-types and mantle processes in the South Lanzo peridotite massif and describe a composite tectonic and magmatic scenario that is not consistent with the ``asthenospheric scenario'' proposed by previous authors. We envisage a ``transitional scenario'' in which extending subcontinental lithospheric mantle was strongly modified (both depleted and refertilized) by early melts with MORB-affinity formed by decompression partial melting of the upwelling asthenosphere, during pre-oceanic rifting and lithospheric thinning in the Ligurian Tethys realm. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New reconstructions of the Western Alps from late Early Jurassic till early Tertiary are proposed. These reconstructions use deep lithospheric data gathered through recent seismic surveys and tomographic studies carried out in the Alps. The present day position, under the Po plain, of the southern limit of the European plate (fig. 1), allows to define the former geometry of the Brianconnais peninsula. The Brianconnais domain is regarded as an exotic terrane formerly belonging to the European margin until Late Jurassic, then transported eastward during the drift of Iberia (fig. 5). Therefore, on a present day Western Alps cross section, a duplication of the European continental margin can be recognized (fig. 10). Stratigraphic and sedimentological data along a zone linking the Pyrenean fracture zone to the Brianconnais, can be related to a rifting event starting in Oxfordian time. This event is responsible for the Late Jurassic till mid-Cretaceous drift of Iberia opening, first the northern Atlantic, then the Gulf of Biscay. Simultaneously, the drift of the Brianconnais will open the Valais ocean and close the Piemontese ocean. The resulting oblique collision zone between the Brianconnais and the Apulian margin generates HP/LT metamorphism starting in Early Cretaceous. The eastward drift of the Brianconnais peninsula will eventually bring it in front of a more northerly segment of the former European margin. The thrusting of the Brianconnais unto that margin takes place in early Tertiary (fig. 9), following the subduction of the Valais ocean. The present nappe pile results not only from continent/continent frontal collision, but also from important lateral displacement of terranes, the most important one being the Brianconnais. The dilemma of `'en echelon'' oceanic domains in the Alps is an outcome of these translations. A solution is found when considering the opening of a Cretaceous Valais ocean across the European margin, running out eastward into the Piemontese ocean, where the drift is taken up along a former transform fault and compensated by subduction under the Apulian margin (fig. 8). In the Western Alps we are then dealing with two oceans, the Piemontese and the Valaisan and a duplicated European margin. In the Eastern Alps the single Piemontese ocean is cut by newly created oceanic crust. All these elements will be incorporated into the Penninic structural domain which does not represent a former unique paleogeographic area, it is a composite accretionary domain squeezed between Europe and Apulia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Atlas Mountains in Morocco are considered as type examples of intracontinental chains, with high topography that contrasts with moderate crustal shortening and thickening. Whereas recent geological studies and geodynamic modeling have suggested the existence of dynamic topography to explain this apparent contradiction, there is a lack of modern geophysical data at the crustal scale to corroborate this hypothesis. Newly-acquired magnetotelluric data image the electrical resistivity distribution of the crust from the Middle Atlas to the Anti-Atlas, crossing the tabular Moulouya Plain and the High Atlas. All the units show different and unique electrical signatures throughout the crust reflecting the tectonic history of development of each one. In the upper crust electrical resistivity values may be associated to sediment sequences in the Moulouya and Anti-Atlas and to crustal scale fault systems in the High Atlas developed during the Cenozoic times. In the lower crust the low resistivity anomaly found below the Mouluya plain, together with other geophysical (low velocity anomaly, lack of earthquakes and minimum Bouguer anomaly) and geochemical (Neogene-Quaternary intraplate alkaline volcanic fields) evidence, infer the existence of a small degree of partial melt at the base of the lower crust. The low resistivity anomaly found below the Anti-Atlas may be associated with a relict subduction of Precambrian oceanic sediments, or to precipitated minerals during the release of fluids from the mantle during the accretion of the Anti-Atlas to the West African Supercontinent during the Panafrican orogeny ca. 685 Ma).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the circum-Pacific ophiolitic belts, when no other biogenic constituents are found, radiolarians have the potential to provide significant biostratigraph- ic information. The Santa Rosa Accretionary Complex, which crops out in several half-windows (Carrizal, Sitio Santa Rosa, Bahia Nancite, Playa Naranjo) along the south shores of the Santa Elena Peninsula in northwestern Costa Rica, is one of these little-known ophiolitic mélanges. It contains various oceanic assemblages of alkaline basalt, radiolarite and polymictic breccias. The radiolarian biochronology presented in this work is mainly based by correlation on the biozonations of Carter et al. (2010), Baumgartner et al. (1995b), and O'Dogherty (1994) and indicate an Early Jurassic to early Late Cretaceous (early Pliensbachian to earliest Turonian) age for the sediments associated with oceanic basalts or recovered from blocks in breccias or megabreccias. The 19 illus- trated assemblages from the Carrizal tectonic window and Sitio Santa Rosa contain in total 162 species belonging to 65 genera. The nomenclature of tecton- ic units is the one presented by (Baumgartner and Denyer, 2006). This study brings to light the Early Jurassic age of a succession of radiolarite, which was previously thought to be of Cretaceous age, intruded by alkaline basalts sills (Unit 3). The presence of Early Jurassic large reworked blocks in a polymictic megabreccia, firstly reported by De Wever et al. (1985) is confirmed (Unit 4). Therefore, the alkaline basalt associated with the radiolarites of these two units (and maybe also Units 5 and 8) could be of Jurassic age. In the Carrizal tectonic window, Middle to early Late Jurassic radiolarian chert blocks associ- ated with massive tholeitic basalts and Early Cretaceous brick-red ribbon cherts overlying pillow basalts are interpreted as fragments of a Middle Jurassic oceanic basement accreted to an Early Cretaceous oceanic Plate, in an intra-oceanic subduction context. Whereas, the knobby radiolarites and black shales of Playa Carrizal are indicative of a shallower middle Cretaceous paleoenvironment. Other remnants of this oceanic basin are found in Units 2, 6, and 7, which documented the rapid approach of the depocentre to a subduction trench during the late Early Cretaceous (Albian-Cenomanian), to possibly early Late Cretaceous (Turonian).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the emplacement and growth of intrusive bodies in terms of mechanism, duration, ther¬mal evolution and rates are fundamental aspects of crustal evolution. Recent studies show that many plutons grow in several Ma by in situ accretion of discrete magma pulses, which constitute small-scale magmatic reservoirs. The residence time of magmas, and hence their capacities to interact and differentiate, are con¬trolled by the local thermal environment. The latter is highly dependant on 1) the emplacement depth, 2) the magmas and country rock composition, 3) the country rock thermal conductivity, 4) the rate of magma injection and 5) the geometry of the intrusion. In shallow level plutons, where magmas solidify quickly, evi¬dence for magma mixing and/or differentiation processes is considered by many authors to be inherited from deeper levels. This work shows however that in-situ differentiation and magma interactions occurred within basaltic and felsic sills at shallow depth (0.3 GPa) in the St-Jean-du-Doigt (SJDD) bimodal intrusion, France. This intrusion emplaced ca. 347 Ma ago (IDTIMS U/Pb on zircon) in the Precambrian crust of the Armori- can massif and preserves remarkable sill-like emplacement processes of bimodal mafic-felsic magmas. Field evidence coupled to high precision zircon U-Pb dating document progressive thermal maturation within the incrementally built ioppolith. Early m-thick mafic sills (eastern part) form the roof of the intrusion and are homogeneous and fine-grained with planar contacts with neighboring felsic sills; within a minimal 0.8 Ma time span, the system gets warmer (western part). Sills are emplaced by under-accretion under the old east¬ern part, interact and mingle. A striking feature of this younger, warmer part is in-situ differentiation of the mafic sills in the top 40 cm of the layer, which suggests liquids survival in the shallow crust. Rheological and thermal models were performed in order to determine the parameters required to allow this observed in- situ differentiation-accumulation processes. Strong constraints such as total emplacement durations (ca. 0.8 Ma, TIMS date) and pluton thickness (1.5 Km, gravity model) allow a quantitative estimation of the various parameters required (injection rates, incubation time,...). The results show that in-situ differentiation may be achieved in less than 10 years at such shallow depth, provided that: (1) The differentiating sills are injected beneath consolidated, yet still warm basalt sills, which act as low conductive insulating screens (eastern part formation in the SJDD intrusion). The latter are emplaced in a very short time (800 years) at high injection rate (0.5 m/y) in order to create a "hot zone" in the shallow crust (incubation time). This implies that nearly 1/3 of the pluton (400m) is emplaced by a subsequent and sustained magmatic activity occurring on a short time scale at the very beginning of the system. (2) Once incubation time is achieved, the calculations show that a small hot zone is created at the base of the sill pile, where new injections stay above their solidus T°C and may interact and differentiate. Extraction of differentiated residual liquids might eventually take place and mix with newly injected magma as documented in active syn-emplacement shear-zones within the "warm" part of the pluton. (3) Finally, the model show that in order to maintain a permanent hot zone at shallow level, injection rate must be of 0.03 m/y with injection of 5m thick basaltic sills eveiy 130yr, imply¬ing formation of a 15 km thick pluton. As this thickness is in contradiction with the one calculated for SJDD (1.5 Km) and exceed much the average thickness observed for many shallow level plutons, I infer that there is no permanent hot zone (or magma chambers) at such shallow level. I rather propose formation of small, ephemeral (10-15yr) reservoirs, which represent only small portions of the final size of the pluton. Thermal calculations show that, in the case of SJDD, 5m thick basaltic sills emplaced every 1500 y, allow formation of such ephemeral reservoirs. The latter are formed by several sills, which are in a mushy state and may interact and differentiate during a short time.The mineralogical, chemical and isotopic data presented in this study suggest a signature intermediate be¬tween E-MORB- and arc-like for the SJDD mafic sills and feeder dykes. The mantle source involved produced hydrated magmas and may be astenosphere modified by "arc-type" components, probably related to a sub¬ducting slab. Combined fluid mobile/immobile trace elements and Sr-Nd isotopes suggest that such subduc¬tion components are mainly fluids derived from altered oceanic crust with minor effect from the subducted sediments. Close match between the SJDD compositions and BABB may point to a continental back-arc setting with little crustal contamination. If so, the SjDD intrusion is a major witness of an extensional tectonic regime during the Early-Carboniferous, linked to the subduction of the Rheno-Hercynian Ocean beneath the Variscan terranes. Also of interest is the unusual association of cogenetic (same isotopic compositions) K-feldspar A- type granite and albite-granite. A-type granites may form by magma mixing between the mafic magma and crustal melts. Alternatively, they might derive from the melting of a biotite-bearing quartz-feldspathic crustal protolith triggered by early mafic injections at low crustal levels. Albite-granite may form by plagioclase cu¬mulate remelting issued from A-type magma differentiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Variations in the stable carbon-isotope ratio of marine and continental sediments can reflect changes in sink and flux modifications of the palaeocarbon cycle. Here we report carbon-isotope compositions of Middle Jurassic marine carbonates from the Betic Cordillera (southern Spain), which represents an ideal region to link the stable carbon-isotope curves directly to ammonite zones and subzones, and thereby for the first time achieve an accurate chronostratigraphic calibration. The five sections studied represent basin and high swell deposits of the Southern Iberian palaeomargin. We find a similar delta C-13 of carbonates between different oceanic areas, suggesting a homogeneous carbon-isotope oceanic reservoir through the Middle Jurassic. The Aalenian-Bajocian transition is a critical period in ammonite evolution; hence the Early Jurassic fauna are replaced by new ammonite families which become dominant throughout the Middle and Late Jurassic. For this reason, we compared the delta C-13 values of carbonates with ammonite diversity and extinction rates at different taxonomical levels in order to explore the possible relationship between the carbon cycle and ammonite evolution. The carbon-isotope values of carbonates are not exactly linearly correlated with the extinction rate and ammonite diversity, but the main faunal turnovers follow minimum delta C-13 values, where extinct taxa are replaced by new ones. Likewise, radiation episodes are associated with increasing delta C-13 values and with transgressive sea-level rise. All these data support the idea that perturbations in the global carbon cycle reflect rapid palaeoenvironmental changes. We made detailed analyses of these faunal turnovers, using them as a proxy to identify major palaeoenvironmental crises in their ecosystems forced by modification in the carbon cycle. (c) 2006 Elsevier B.V All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evolution of the Red Sea/Gulf of Suez and the Central Atlantic rift systems shows that an initial, transtensive rifting phase, affecting a broad area around the future zone of crustal separation, was followed by a pre-oceanic rifting phase during which extensional strain was concentrated on the axial rift zone. This caused lateral graben systems to become inactive and they evolved into rift-rim basins. The transtensive phase of diffuse crustal extension is recognized in many intra-continental rifts. If controlling stress systems relax, these rifts abort and develop into palaeorifts. If controlling stress systems persist, transtensive rift systems can enter the pre-oceanic rifting stage, during which the rift zone narrows and becomes asymmetric as a consequence of simple-shear deformation at shallow crustal levels and pure shear deformation at lower crustal and mantle-lithospheric levels. Preceding crustal separation, extensional denudation of the lithospheric mantle is possible. Progressive lithospheric attenuation entails updoming of the asthenosphere and thermal doming of the rift shoulders. Their uplift provides a major clastic source for the rift basins and the lateral rift-rim basins. Their stratigraphic record provides a sensitive tool for dating the rift shoulder uplift. Asymmetric rifting leads to the formation of asymmetric continental margins, corresponding in a simple-shear model to an upper plate and a conjugate lower plate margin, as seen in the Central Atlantic passive margins of the United States and Morocco. This rifting model can be successfully applied to the analysis of the Alpine Tethys palaeo-margins (such as Rif and the Western Alps).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Permian Chert Event (PCE) was a 30 Ma long episode of unusual chert accumulation along the northwest margin of Pangea, and possibly worldwide. The onset of the PCE occurred at about the Sakmarian-Artinskian boundary in the Sverdrup Basin, Canadian Arctic, where it coincides with a maximum flooding event, the ending of high-frequency/high-amplitude shelf cyclicity, the onset of massive biogenic chert deposition in deep-water distal areas, and a long-term shift from warm- to cool-water carbonate sedimentation in shallow-water proximal areas. A similar and coeval shift is observed from the Barents Sea to the northwestern USA. A landward and southward expansion of silica factories occurred during the Middle and Late Permian at which time warm-water carbonate producers disappeared completely from the northwest margin of Pangea. Biotically impoverished and increasingly narrow cold-water carbonate factories (characterised by non-cemented bioclasts of sponges, bryozoans, echinoderms and brachiopods) were then progressively replaced by silica factories. By Late Permian time, little carbonate sediments accumulated in the Barents Sea and in the Sverdrup Basin. where the deep- to shallow-water sedimentary spectrum was occupied by siliceous sponge spicules. By that time, biogenic silica sedimentation was common throughout the world. Silica factories collapsed in the Late Permian, abruptly bringing the PCE to an end. In northwest Pangea, the end- Permian collapse of the PCE was associated with a major transgression and with a return to much warmer oceanic and continental climatic conditions. Chert deposition resumed in the distal oceanic areas during the early Middle Triassic (Anisian) after a 8-10 Ma interruption (Early Triassic Chert Gap). The conditions necessary for the onset, expansion and zenith of the PCE were provided by the thermohaline circulation of nutrient-rich cold waters along the northwestern and western margin of Pangea, and possibly throughout the world oceans. These conditions provided an efficient transportation mechanism that constantly replenished the supply of silica in the area, created a nutrient- and oxygen-rich environment favouring siliceous biogenic productivity. established cold sea-floor conditions, hindering silica dissolution, while increasing calcium carbonate solubility, and provided conditions adverse to organic and inorganic carbonate production, The northwest margin of Pangea was, for nearly 30 Ma. bathed by cold waters presumably derived from the seasonal melting of northern sea ice, the assumed engine for thermohaline circulation. This process started near the Sakmarian-Artinskian boundary. intensified throughout Middle and Late Permian time and ceased suddenly in latest Permian time, It led to oceanic conditions much colder than normally expected from the palaeolatitudes. and the influence of cold northerly-derived water was felt as far south southern Nevada. The demise of silica factories was caused by the rapid breakdown of these conditions and the establishment of a much warmer marine environment accompanied by sluggish circulation and perhaps a reduced input of dissolved silica to the ocean. Complete thawing of northern sea ice would have ended thermohaline circulation and led to warm and sluggish oceanic conditions inimical to the production. accumulation and preservation of biogenic silica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New data on biostratigraphy, sedimentology and tectonics of the Russian Far Eastern region (Lower Amurian terrane) are presented. This study shows that sedimentary sequence of the terrane consists of interbedded Radiolaria-bearing siliceous and volcaniclastic sediments spanning an interval of over 90 million years. It is shown that accumulation of radiolarian deposits on an oceanic plate was associated with alkaline (intraplate) volcanism in the Jurassic, while the plate was drifting, and with some are volcanism during the Early Cretaceous. The younger siliceous rocks contain volcaniclastic material and indicate that the studied sequence approached the trench in the Early Cretaceous (Hauterivian-Barremian) and became accreted in the late Albian-early Cenomanian. We describe and illustrate radiolarian species extracted fi om 21 samples. A taxonomic list of 194 taxa and nine plates of Jurassic-Early Cretaceous Radiolaria are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Comparative phylogeography seeks for commonalities in the spatial demographic history of sympatric organisms to characterize the mechanisms that shaped such patterns. The unveiling of incongruent phylogeographic patterns in co-occurring species, on the other hand, may hint to overlooked differences in their life histories or microhabitat preferences. The woodlouse-hunter spiders of the genus Dysdera have undergone a major diversi cation on the Canary Islands. The species pair Dysdera alegranzaensis and Dysdera nesiotes are endemic to the island of Lanzarote and nearby islets, where they co-occur at most of their known localities. The two species stand in sharp contrast to other sympatric endemic Dysdera in showing no evidence of somatic (non-genitalic) differentiation. Phylogenetic and population genetic analyses of mitochondrial cox1 sequences from an exhaustive sample of D. alegranzaensis and D. nesiotes specimens, and additional mitochondrial (16S, L1, nad1) and nuclear genes (28S, H3) were analysed to reveal their phylogeographic patterns and clarify their phylogenetic relationships. Relaxed molecular clock models using ve calibration points were further used to estimate divergence times between species and populations. Striking differences in phylogeography and population structure between the two species were observed. Dysdera nesiotes displayed a metapopulation-like structure, while D. alegranzaensis was characterized by a weaker geographical structure but greater genetic divergences among its main haplotype lineages, suggesting more complex population dynamics. Our study con rms that co-distributed sibling species may exhibit contrasting phylogeographic patterns in the absence of somatic differentiation. Further ecological studies, however, will be necessary to clarify whether the contrasting phylogeographies may hint at an overlooked niche partitioning between the two species. In addition, further comparisons with available phylogeographic data of other eastern Canarian Dysdera endemics con rm the key role of lava ows in structuring local populations in oceanic islands and identify localities that acted as refugia during volcanic eruptions

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Geological processes and ecological adaptation are major drivers of diversification on oceanic islands. Although diversification in these islands is often interpreted as resulting from dispersal or island hopping rather than vicariance, this may not be the case in islands with complex geological histories. The island of Tenerife, in the Canary Islands, emerged in the late Miocene as 3 precursor islands that were subsequently connected and reisolated by volcanic cycles. The spider Dysdera verneaui is endemic to the island of Tenerife, where it is widely distributed throughout most island habitats, providing an excellent model to investigate the role of physical barriers and ecological adaptation in shaping within-island diversity. Here, we present evidence that the phylogeographic patterns of this species trace back to the independent emergence of the protoislands. Molecular markers (mitochondrial genes cox1, 16S, and nad1 and the nuclear genes ITS-2 and 28S) analyzed from 100 specimens (including a thorough sampling of D. verneaui populations and additional outgroups) identify 2 distinct evolutionary lineages that correspond to 2 precursor islands, each with diagnostic genital characters indicative of separate species status. Episodic introgression events between these 2 main evolutionary lineages explain the observed incongruence between mitochondrial and nuclear markers, probably as a result of the homogenization of their ITS-2 sequence types. The most widespread lineage exhibits a complex population structure, which is compatible with either secondary contact, following connection of deeply divergent lineages, or alternatively, a back colonization from 1 precursor island to another.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Geological processes and ecological adaptation are major drivers of diversification on oceanic islands. Although diversification in these islands is often interpreted as resulting from dispersal or island hopping rather than vicariance, this may not be the case in islands with complex geological histories. The island of Tenerife, in the Canary Islands, emerged in the late Miocene as 3 precursor islands that were subsequently connected and reisolated by volcanic cycles. The spider Dysdera verneaui is endemic to the island of Tenerife, where it is widely distributed throughout most island habitats, providing an excellent model to investigate the role of physical barriers and ecological adaptation in shaping within-island diversity. Here, we present evidence that the phylogeographic patterns of this species trace back to the independent emergence of the protoislands. Molecular markers (mitochondrial genes cox1, 16S, and nad1 and the nuclear genes ITS-2 and 28S) analyzed from 100 specimens (including a thorough sampling of D. verneaui populations and additional outgroups) identify 2 distinct evolutionary lineages that correspond to 2 precursor islands, each with diagnostic genital characters indicative of separate species status. Episodic introgression events between these 2 main evolutionary lineages explain the observed incongruence between mitochondrial and nuclear markers, probably as a result of the homogenization of their ITS-2 sequence types. The most widespread lineage exhibits a complex population structure, which is compatible with either secondary contact, following connection of deeply divergent lineages, or alternatively, a back colonization from 1 precursor island to another.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Geological processes and ecological adaptation are major drivers of diversification on oceanic islands. Although diversification in these islands is often interpreted as resulting from dispersal or island hopping rather than vicariance, this may not be the case in islands with complex geological histories. The island of Tenerife, in the Canary Islands, emerged in the late Miocene as 3 precursor islands that were subsequently connected and reisolated by volcanic cycles. The spider Dysdera verneaui is endemic to the island of Tenerife, where it is widely distributed throughout most island habitats, providing an excellent model to investigate the role of physical barriers and ecological adaptation in shaping within-island diversity. Here, we present evidence that the phylogeographic patterns of this species trace back to the independent emergence of the protoislands. Molecular markers (mitochondrial genes cox1, 16S, and nad1 and the nuclear genes ITS-2 and 28S) analyzed from 100 specimens (including a thorough sampling of D. verneaui populations and additional outgroups) identify 2 distinct evolutionary lineages that correspond to 2 precursor islands, each with diagnostic genital characters indicative of separate species status. Episodic introgression events between these 2 main evolutionary lineages explain the observed incongruence between mitochondrial and nuclear markers, probably as a result of the homogenization of their ITS-2 sequence types. The most widespread lineage exhibits a complex population structure, which is compatible with either secondary contact, following connection of deeply divergent lineages, or alternatively, a back colonization from 1 precursor island to another.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Environmental and depositional changes across the Late Cenomanian oceanic anoxic event (OAE2) in the Sinai, Egypt, are examined based on biostratigraphy, mineralogy, delta(13)C values and phosphorus analyses. Comparison with the Pueblo, Colorado, stratotype section reveals the Whadi El Ghaib section as stratigraphically complete across the late Cenomanian-early Turonian. Foraminifera are dominated by high-stress planktic and benthic assemblages characterized by low diversity, low-oxygen and low-salinity tolerant species, which mark shallow-water oceanic dysoxic conditions during OAE2. Oyster biostromes suggest deposition occurred in less than 50 m depths in low-oxygen, brackish, and nutrient-rich waters. Their demise prior to the peak delta(13)C excursion is likely due to a rising sea-level. Characteristic OAE2 anoxic conditions reached this coastal region only at the end of the delta(13)C plateau in deeper waters near the end of the Cenomanian. Increased phosphorus accumulations before and after the delta(13)C excursion suggest higher oxic conditions and increased detrital input. Bulk-rock and clay mineralogy indicate humid climate conditions, increased continental runoff and a rising sea up to the first delta(13)C peak. Above this interval, a dryer and seasonally well-contrasted climate with intermittently dry conditions prevailed. These results reveal the globally synchronous delta(13)C shift, but delayed effects of OAE2 dependent on water depth.