989 resultados para Objective functions
Resumo:
The objective of this study was to determine the practicality and effectiveness of using submerged vanes ("Iowa Vanes") to control bank erosion in a bend of East Nishnabotna River, Iowa. The vane system was constructed during the summer of 1985. It functions by eliminating, or reducing, the centrifugally induced helical motion of the flow in the bend, which is the root cause of bank undermining. The system was monitored over a 2-year period, from September 1985 to October 1987. Two surveys were conducted in the spring of 1986 in which data were taken of depths and velocities throughout the bend and of water-surface slope. The movement of the bank was determined from aerial photos and from repeated measurements of the vane-to-bank distance. The bankfull scour depths and velocities along the bank have been reduced significantly; and the movement of the bank has been stopped or considerably reduced. The improvements were obtained without changing the energy slope of the channel. Areas of design improvements were identified.
Resumo:
Interdependence is the main feature of dyadic relationships and, in recent years, various statistical procedures have been proposed for quantifying and testing this social attribute in different dyadic designs. The purpose of this paper is to develop several functions for this kind of statistical tests in an R package, known as nonindependence, for use by applied social researchers. A Graphical User Interface (GUI) is also developed to facilitate the use of the functions included in this package. Examples drawn from psychological research and simulated data are used to illustrate how the software works.
Resumo:
BACKGROUND and OBJECTIVE: A non-touch laser-induced microdrilling procedure is studied on mouse zona pellucida (ZP). STUDY DESIGN/MATERIALS and METHODS: A 1.48-microns diode laser beam is focused in a 8-microns spot through a 45x objective of an inverted microscope. Mouse zygotes, suspended in a culture medium, are microdrilled by exposing their ZP to a short laser irradiation and allowed to develop in vitro. RESULTS: Various sharp-edged holes can be generated in the ZP with a single laser irradiation. Sizes can be varied by changing irradiation time (3-100 ms) or laser power (22-55 mW). Drilled zygotes present no signs of thermal damage under light and scanning electron microscopy and develop as expected in vitro, except for a distinct eight-shaped hatching behavior. CONCLUSION: The microdrilling procedure can generate standardized holes in mouse ZP, without any visible side effects. The hole formation can be explained by a local photothermolysis of the protein matrix.
Resumo:
This study investigated the development of all 3 components of episodic memory (EM), as defined by Tulving, namely, core factual content, spatial context, and temporal context. To this end, a novel, ecologically valid test was administered to 109 participants aged 4-16 years. Results showed that each EM component develops at a different rate. Ability to memorize factual content emerges early, whereas context retrieval abilities continue to improve until adolescence, due to persistent encoding difficulties (isolated by comparing results on free recall and recognition tasks). Exploration of links with other cognitive functions revealed that short-term feature-binding abilities contribute to all EM components, and executive functions to temporal and spatial context, although ability to memorize temporal context is predicted mainly by age.
Resumo:
Proteases control many vital aspects of humoral and cellular immune responses, including the maturation of cytokines and the killing of target cells. Recently, it has become evident that triggering of the T-cell receptor controls T-cell proliferation through proteases such as mucosa-associated lymphoid tissue 1 (MALT1) and Caspase-8 that act both as adapters and enzymes. Here, we discuss the role of these and other proteases that are relevant to the control of the T-cell response and represent interesting targets of therapeutic immunomodulation.
Resumo:
The specific heat, cp, of two amorphous silicon (a-Si) samples has been measured by differential scanning calorimetry in the 100–900K temperature range. When the hydrogen content is reduced by thermal annealing, cp approaches the value of crystalline Si (c-Si). Within experimental accuracy, we conclude that cp of relaxed pure a-Si coincides with that of c-Si. This result is used to determine the enthalpy, entropy, and Gibbs free energy of defect-free relaxed a-Si. Finally, the contribution of structural defects on these quantities is calculated and the melting point of several states of a-Si is predicted
Resumo:
Adult mammalian central nervous system (CNS) axons have a limited regrowth capacity following injury. Myelin-associated inhibitors (MAIs) limit axonal outgrowth and their blockage improves the regeneration of damaged fiber tracts. Three of these proteins, Nogo-A, MAG and OMgp, share two common neuronal receptors: NgR1, together with its co-receptors (p75(NTR), TROY and Lingo-1), and the recently described paired immunoglobulin-like receptor B (PirB). These proteins impair neuronal regeneration by limiting axonal sprouting. Some of the elements involved in the myelin inhibitory pathways may still be unknown, but the discovery that blocking both PirB and NgR1 activities leads to near-complete release from myelin inhibition, sheds light on one of the most competitive and intense fields of neuroregeneration study during in recent decades. In parallel with the identification and characterization of the roles and functions of these inhibitory molecules in axonal regeneration, data gathered in the field strongly suggest that most of these proteins have roles other than axonal growth inhibition. The discovery of a new group of interacting partners for myelin-associated receptors and ligands, as well as functional studies within or outside the CNS environment, highlights the potential new physiological roles for these proteins in processes such as development, neuronal homeostasis, plasticity and neurodegeneration.
Resumo:
In clinical settings, functional evaluation of shoulder movement is primarily based on what the patient thinks he/she is able to do rather than what he/she is actually performing. We proposed a new approach for shoulder assessment based on inertial sensors to monitor arm movement in the daily routine. The detection of movement of the humerus relative to the trunk was first validated in a laboratory setting (sensitivity>95%, specificity>97%). Then, 41 control subjects and 21 patients suffering from a rotator cuff tear were evaluated (before and after surgery) using clinical questionnaires and a one-day measurement of arm movement. The quantity of movement was estimated with the movement frequency and its symmetry index (SIFr). The quality of movement was assessed using the Kolmogorov-Smirnov distance (KS) between the cumulative distribution of the arm velocity for controls and the same distribution for each patient. SIFr presented differences between patients and controls at 3 month follow-up (p<0.05) while KS showed differences also after 6 months (p<0.01). SIFr illustrated a change in dominance due to the disorder whereas KS, which appeared independent of the dominance and occupation, showed a change in movement velocity. Both parameters were correlated to clinical scores (R(2) reaching 0.5). This approach provides clinicians with new objective parameters for evaluating the functional ability of the shoulder in daily conditions, which could be useful for outcome assessment after surgery.
Resumo:
Introduction: A new ultra congruent, postero-stabilized total knee arthroplasty (TKA) with a mobile bearing, the FIRST knee prosthesis (Free Insert in Rotation Stabilized in Translation, Symbios SA), was designed and expected to significantly reduce polyethylene wear, to improve the range of motion and the overall stability of the knee while ensuring a physiological ligament balance. Gait analysis has proven to give really objective outcome parameters after lower limb surgery. The goal of our study was to compare the subjective and really objective results of this new TKA with two other widespread models of TKA. Methods: A clinical prospective monocentric cohort study of 100 consecutive patients (47-88 yrs) undergoing a FIRST TKA for primary osteoarthritis is currently being done. Pre- and post-operative follow-ups (6 weeks, 4 months and 1 year) were done with well-recognized subjective evaluations (EQ-5D and WOMAC scores) and semi-objective questionnaires (KSS score and radiography evaluation) as well as with a really objective evaluation using gait parameters from 6 walking trials, performed at different speeds (slow, normal and fast) with an ambulatory gait analysis system (Physilog®, BioAGM CH). The outcomes of the first 32 new TKA after one year of follow-up were compared to the results after 1 year of a randomized controlled clinical trial comparing 29 NexGen® postero-stabilized TKA (Zimmer Inc) with a fixed bearing and 26 NexGen® TKA with a mobile bearing using the same methods. Results: Subjective and semi-objective results were similar for the three types of TKA. As for the really objective parameters, the gait cycle time of the FIRST TKA was statistically significantly shorter at normal speed of walk, as well as double-support periods, as compared to both standard models. The extension (in terms of range of motion when walking) of the operated knee was significantly improved for all three types of walk in favour of the FIRST TKAs compared to both NexGen TKAs. The normal walking speed was significantly higher with faster swing speed and stride lengths for the new TKA. Significantly better coordination scores were observed at normal walking speed for the FIRST TKA as compared to the fixed-bearing TKAs. Conclusion: The FIRST TKAs showed statistically significantly better objective outcomes in terms of gait after one year of follow-up with similar subjective and semi-objective results in comparison with widespread TKA designs. These encouraging short-terms results will have to be confirmed at a 5 years follow-up of the FIRST TKAs.
Resumo:
Following a scheme of Levin we describe the values that functions in Fock spaces take on lattices of critical density in terms of both the size of the values and a cancelation condition that involves discrete versions of the Cauchy and Beurling-Ahlfors transforms.
Resumo:
We study the possibility of splitting any bounded analytic function $f$ with singularities in a closed set $E\cup F$ as a sum of two bounded analytic functions with singularities in $E$ and $F$ respectively. We obtain some results under geometric restrictions on the sets $E$ and $F$ and we provide some examples showing the sharpness of the positive results.
Resumo:
Diurnal oscillations of gene expression controlled by the circadian clock underlie rhythmic physiology across most living organisms. Although such rhythms have been extensively studied at the level of transcription and mRNA accumulation, little is known about the accumulation patterns of proteins. Here, we quantified temporal profiles in the murine hepatic proteome under physiological light-dark conditions using stable isotope labeling by amino acids quantitative MS. Our analysis identified over 5,000 proteins, of which several hundred showed robust diurnal oscillations with peak phases enriched in the morning and during the night and related to core hepatic physiological functions. Combined mathematical modeling of temporal protein and mRNA profiles indicated that proteins accumulate with reduced amplitudes and significant delays, consistent with protein half-life data. Moreover, a group comprising about one-half of the rhythmic proteins showed no corresponding rhythmic mRNAs, indicating significant translational or posttranslational diurnal control. Such rhythms were highly enriched in secreted proteins accumulating tightly during the night. Also, these rhythms persisted in clock-deficient animals subjected to rhythmic feeding, suggesting that food-related entrainment signals influence rhythms in circulating plasma factors.