957 resultados para OXIDIZED PHOSPHOLIPIDS
Resumo:
The oxidation dynamics and morphology of undoped and heavily phosphorus-doped polycrystalline silicon films oxidized at a wide temperature and time range in dry and wet O2 atmosphere have been investigated. It is shown that the oxidation rates of polycrystalline silicon films are different from that of single-crystal silicon when the oxidation temperature is below 1000-degrees-C. There is a characteristic oxidation time, t(c), under which the undoped polysilicon oxide is not only thicker than that of (100)-oriented single-crystal silicon, but also thicker than that of (111)-oriented single-crystal silicon. For phosphorus-doped polycrystalline silicon films, the oxide thickness is thinner not only than that of (111)-oriented, single-crystal silicon, but also thinner than that of (100)-oriented, single-crystal silicon. According to TEM cross-sectional studies, these characteristics are due to the enhanced oxidation at grain boundaries of polycrystalline silicon films. A stress-enhanced oxidation model has been proposed and used to explain successfully the enhanced oxidation at grain boundaries of polycrystalline silicon films. Using this model, the oxidation linear rate constant of polysilicon (B/A)poly has been calculated and used in the modeling of the oxidation dynamics. The model results are in good agreement with the experimental data over the entire temperature and time ranges studied.
Resumo:
X-ray photoelectron spectroscopy (XPS) combined with Auger electron spectroscopy (AES) have been used to study the oxides from a Si0.5Ge0.5 alloy grown by molecular beam epitaxy (MBE). The oxidation was performed at 1000 degrees C wet atmosphere. The oxide consists of two layers: a mixed (Si,Ge)O-x layer near the surface and a pure SiOx layer underneath. Ge is rejected from the pure SiOx and piles up at the SiOx/SiGe interface. XPS analysis demonstrates that the chemical shifts of Si 2p and Ge 3d in the oxidized Si0.5Ge0.5 are significantly larger than those in SiO2 and GeO2 formed from pure Si and Ge crystals.
Resumo:
This paper presents the development of LPCVD growth of 3C-SiC thin films grown on Si mesas and thermally oxidized SiO2 masks over Si with an area of 150 × 100μm^2 and SiO2/Si substrates. The growth has been performed via chemical vapor deposition using SiH4 and C2H4 precursor gases with carrier gas of H2. 3C-SiC films on these substrates were characterized by optical microscopy, X-ray diffraction ( XRD ), X-ray photoelectron spectroscopy ( XPS ), scanning electron microscopy (SEM) and room temperature Hall effect measurements. It is shown that there were no voids at the interface between 3C-SiC and SiO2.
Resumo:
A 1.3μm low-threshold edge-emitting AlGaInAs multiple-quantum-well(MQW) laser with AlInAs-oxide confinement layers is fabricated.The Al-contained waveguide layers upper and low the active layers are oxidized as current-confined layers using wet-oxidation technique.This structure provides excellent current and optical confinement,resulting in 12.9mA of a low continuous wave threshold current and 0.47W/A of a high slope efficiency of per facet at room temperature for a 5-μm-wide current aperture.Compared with the ridge waveguide laser with the same-width ridge,the threshold current of the AlInAs-oxide confinement laser has decreased by 31.7% and the slope efficiency has increased a little.Both low threshold and high slope efficiency indicate that lateral current confinement can be realized by oxidizing AlInAs waveguide layers.The full width of half maximum angles of the Al-InAs-oxide confinement laser are 21.6° for the horizontal and 36.1° for the vertical,which demonstrate the ability of the AlInAs oxide in preventing the optical field from spreading laterally.
Resumo:
For an olfactory sensor or electronic nose, the task is not only to detect the object concentration, but also to recognize it. It is well known that all the elements can be identified by their charge to mass ratio e(+)/m. We tried to imitate this principle for molecular recognition. Two kinds of sensors are used simultaneously in testing. One is quartz crystal microbalance (QCM) for detecting the change in mass, the other is interdigital electrode (IE) for detecting the change in conduction, as an electro-mass multi-sensor (EMMS). in this paper, the principle and the feasibility of this method are discussed. The preliminary results on the recognition of alcohol by EMMS coated with lipids are presented. Meanwhile, the multi-sensor can also be used as an instrument for research on some physico-chemistry problems. The change in conduction of coated membrane caused by one absorbed molecule is reported. It is found that when a QCM is coated with membrane, it still obeys the relationship Delta F (frequency change of QCM) = K Delta m (mass change of absorbed substance) and the proportional coefficient, K, depends not only on quartz properties but also on membrane characteristics as well. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
Silicon-based silica waveguide (SiO2/Si) devices have huge applications in optical telecommunication. SiO2 up to 25-mu m thick is necessary for some passive SiO2/Si waveguide devices. Oxidizing porous silicon to obtain thick SiO2 as cladding layer is presented. The experimental results of porous layer and oxidized porous layer formation were given. The relationship between cracking of SiO2 and temperature varying rate was given experimentally. Such conclusions are drawn: oxidation rate of porous silicon is several orders faster than that of bulk silicon; appropriate temperature variation rate during oxidation can prevent SiO2 on silicon substrates from cracking, and 25 mu m thick silicon dioxide layer has been obtained. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
食品安全一直是世界各国密切关注的社会问题,直接关系人民群众的身体健康和社会稳定。代谢组学已广泛应用于毒理学机制研究、药物安全性评价等领域。将代谢组学技术应用于食品安全评价领域是一项有益的探索研究。目前我国许多水域镉含量超标,导致鱼类等水产品对镉的蓄积,对人体膳食健康造成威胁。 本文以鲫鱼为受试动物,开展室内水箱养殖实验,设定50g•L-1、500g•L-1两个镉浓度水平,共养殖25天,其中暴露期20天和净化期5天。通过镉含量测定和鱼肉磷脂代谢组学分析得到以下结论: 1)以暴露浓度、暴露时间、鱼体组织部位为因素,发现了鲫鱼对水环境中镉的积累和分布规律; 2)针对鱼肉开展磷脂代谢组学分析,①定性分析,通过质谱图解析基本确认了鱼肉中主要的磷脂分子的脂肪酸组成。②定量分析,采用HPLC定量分析暴露0天(K组)、10天(B组)、20天(D组)共计30个鱼肉样本中的磷脂酰胆碱(PC)含量, 发现K组与B组、B组与D组之间有显著性差异(P<0.05),K组与D组无显著性差异。表明暴露10天后PC含量普遍低于正常水平(暴露0天),暴露20天后PC含量基本恢复到正常水平。③模式识别分析,PLS-DA主成分分析可有效识别K、B、D三组样本。 3)分别从限量标准、膳食安全风险评估两个角度评价了鱼肉膳食安全风险。通过PC定量分析和主成分分析,发现鱼肉中PC总量可以作为指示鲫鱼受到镉暴露的生物标示物;通过磷脂代谢图谱与鱼肉镉含量PLS拟合模型分析有效表征和量化了鱼肉磷脂对镉暴露的代谢响应,探索性提出借助拟合模型,通过磷脂代谢图谱分析预测鱼肉样本的镉含量。 4)在食品安全风险评价方面,建议采用限量标准、膳食摄入量、代谢组学识别和模型预测分析等相结合的手段,对传统风险评估体系在继承的基础上加以科学性的扩充和完善。
Resumo:
砷是毒性最强的元素之一,水体中砷的污染己经引起人们广泛的关注。我国的新疆、内蒙、山西和台湾等省和地区地下水砷含量严重超标。全球共有5,000多万人遭受高砷饮用水的威胁,其中中国有1,500多万,是饮用水砷污染最严重的国家之一。WHO推荐饮用水砷的最高允许浓度从原来的50 µg•L-1已降至10 µg•L-1。更为严格的砷卫生标准的颁布,对作为饮用水源的地下水中的砷去除工艺提出了更高的要求。吸附法除砷比膜法、混凝法和离子交换法更安全、简便,是砷去除工艺中最有效的方法之一。 首先,本研究通过优化制备条件(包括炭种类的选择、炭的粒径大小、还原剂的浓度及滴定速率、反应温度、铁盐的种类及浓度、分散剂的比例及浓度),制备了负载型纳米铁。考虑到砷的去除效率、工程应用的可行性以及经济性,最优的制备条件如下:选用粒径为20~40目煤质炭,在室温、一定的分散剂比例及浓度,0.2 M KBH4滴速为20 d•min-1时所制备的Fe/炭为82.0 mg•g-1;纳米铁在活性炭孔内呈针状,其直径为30~500 nm,长度为1,000~2,000 nm。绝大多数的铁都负载到活性炭内部,这在处理水时铁不流失很重要。 其次,利用制备的负载型纳米铁作吸附载体,进行了饮用水中As(Ⅴ)的吸附去除实验。研究了该吸附剂对As(Ⅴ)的吸附等温线、动力学以及影响动力学的各种因素(包括As(Ⅴ)的不同初始浓度、吸附剂用量、pH值、共存离子和不同温度)、pH值、共存离子等环境条件对As(Ⅴ)去除的影响;以及吸附剂的再生及再生后的吸附效率等。研究发现在前12 h内吸附较快,72 h时达到了平衡。用Langmuir 吸附等温式估算出As(Ⅴ)的吸附量为12.0 mg•g-1。该吸附剂在pH 6.5, (25±2)℃, As(Ⅴ)初始浓度为2 mg•L-1,吸附剂用量为1.0 g•L-1时,As(Ⅴ)的去除率为75.2%;当把吸附剂的用量增加到1.5 g•L-1时,As(Ⅴ)的去除率可达99.9%以上。吸附剂可以用0.1M的NaOH浸泡12 h后即可再生,再生效率较高。常见的阴离子中PO43-、SiO32-对As(Ⅲ)的去除抑制较大,而SO42-、CO32-、C2O42-等离子对砷的去除影响较小。Fe2+对As(Ⅲ)的吸附抑制作用较大而其它阳离子影响不大。吸附剂可用0.1 M NaOH 有效再生,并且具有良好的机械性能。实验室初步实验数据表明,该吸附剂对饮用水除砷具有较好的应用前景。 第三,利用实验室制备的负载型纳米铁对饮用水中As(Ⅲ)的吸附去除也进行了研究。考察了吸附等温线、动力学以及影响动力学的各种因素、pH值、共存离子等环境条件对As(Ⅲ)去除的影响;以及吸附剂的再生及再生后的吸附效率等。研究发现,该吸附剂在pH 6.5, (25±2)℃, As(Ⅲ)初始浓度为2 mg•L-1,吸附剂用量为1.0 g•L-1时, 对As(Ⅲ)的去除率为99.8%;其吸附容量为1.996mg•g-1。吸附过程中部分As(Ⅲ)被氧化。与As(Ⅴ)的吸附相比,该吸附剂对As(Ⅲ)的效率比较高-而常见的其它除砷吸附剂如载铁纤维棉等,对As(Ⅴ)的效率比As(Ⅲ)高,为有效去除As(Ⅲ),常常需要专门加上氧化这一过程。 最后,利用负载型纳米铁对饮用水中As(Ⅲ) 的氧化性能进行考察,发现该吸附剂不但能够有效吸附去除饮用水中的砷,而且还能把As(Ⅲ)有效地氧化为As(Ⅴ)。经过对吸附剂的构成组分分析发现,活性炭表面因富含多种官能团而对三价砷的氧化作用最大;其次是纳米铁也能把As(Ⅲ)氧化为As(Ⅴ)。
Resumo:
多羟基哌啶类化合物通常称为氮杂糖,由于与糖结构的相似性,亚胺基环醇表现出强的糖苷酶和糖基转移酶抑制活性,可调控在生物识别及酶结构控制中起到重要作用的糖蛋白的生物合成与水解。因此这类抑制剂有望成为与糖代谢紊乱有关的疾病的治疗药物,如:抗糖尿病、抗肿瘤、抗溶酶体贮积症及抗病毒感染(包括艾滋病)等药物。正是由于氮杂糖的重要生物活性及诱人的药用开发前景,近年来,有关氮杂糖及其衍生物的合成、生物活性及应用研究备受关注。 本论文探索了一系列的作为潜在的迈克加成中间体1-C-乙酰甲基/甲氧羰基甲基-5-N-取代呋喃核糖碳苷衍生物在碱的作用下先发生β-消除反应,接着发生分子内的迈克加成反应生成1-C-乙酰甲基-N-取代氮杂吡喃糖碳苷衍生物及1-C-甲氧羰基甲基-N-取代氮杂吡喃糖碳苷衍生物的方法,该转变过程为先通过β-消除得到非环状的α/β不饱和共轭酮或酯的中间体,接着5-N-取代氨基与分子内的α/β不饱和共轭酮或酯发生分子内的1,4-亲核加成,其中,2'-酯的环加成立体选择性的得到β型1-C-乙酰甲基-N-取代氮杂吡喃糖碳苷衍生物,而2'-酮的环加成得到立体异构体1-C-乙酰甲基-N-取代氮杂吡喃糖碳苷衍生物。此外,该类N-取代氮杂吡喃糖碳苷衍生物进一步脱除保护基,得到了一系列新的N-取代氮杂吡喃糖衍生物,拓展了氮杂吡喃糖碳苷分子库。 中间体1-C-(2'-oxoalkyl)-5-N-alkylated glycoribofuranoside的合成是由核糖为原料,通过对其结构修饰,在C-5氮原子上先引入不同的取代基,在C-1上引入乙酰甲基或甲氧羰基甲基。C-5取代氨基的引入通过两种方法:(a) 5-取代链状脂肪氨基可由链状的伯胺直接与5-甲磺酰基发生SN2亲核取代得到;(b) 5-取代芳香氨基可通过芳香醛与C-5氨基缩合再由硼氢化钠还原得到。2'-酰基的引入通过烯丙基氧化得到:2'-酮羰基由醋酸汞和琼斯试剂氧化得到;2'-酯基由高锰酸钾氧化再碘甲烷的作用下得到。 The polyhydroxylated piperidines, commonly be called azasugars. Iminocyclitols and their derivatives have exhibited remarkable biological activity to inhibit glycosidase-processing enzymes, with resulting potential chemotherapeutic applications against diabetes, cancer, lysosomal storage disorders and viral infections including AIDS. Recently, because of the important biological activity and excellent foreground on pharmaceutical application, great attention has been attracted to the synthesis of the new derivatives and analogues. In this dissertation, 1-C-(2'-oxoalkyl)-5-N-substituted-glycoribofuranosides, which used as latent substrates for intramolecular hetero-Michael addition, were converted to 2-ester and 2-ketone aza-C-glycopyranosides by base treatment. The transformation was achieved through β-elimination to an acyclic α/β-conjugated ketone or ester, followed by an intramolecular hetero-Michael addition by the 5-N-alkylated amino group. The 2-ester cycloaddition was highly stereoselective in favor of an equatorial 1-C-substitution while the 2-ketone cycloaddition was produced a pair of stereoisomers of 2′-ketonyl aza-C-glycoside. Additionally, the resultant different N-alkylated aza-C-glycopyranosides could be further prepared for various azasugar library constructions by removal of protecting groups. Synthesis of the key intermediate 1-C-(2'-oxoalkyl)-5-N-alkylated glycoribo- furanoside involved the introduction of 5-substituted amino and 1-C-2′-oxoalkyl groups from D-ribose. The 5-alkylated amino was introduced through two methods: (a) the 5-aliphatic series amino synthesized by the nucleophilic substitution of 5-mesylate using neat ethylamine, propylamine, butylamine, and hexylamine, (b) the 5-aromatic series amino synthesized by various aromatic aldehydes with C-5 amino under NaBH4 reduction. The 1-C-2′-oxoalkyl groups were introduced through oxidation of the ally group: the 1-C-allyl group was oxidized with Hg(OAc)2 and Jones reagent to the 2-ketonyl C-glycoside; the 1-C-allyl group was oxidized with KMnO4 and CH3I/NaHCO3 to 1-C-methyl acetate glycoside.
Resumo:
Baeyer-Villiger氧化反应是一种很重要的化学反应,产生的许多中间体或产物可以被用来生产多种化学产品和药物。此反应具有多功能性,可以氧化多种羰基化合物,但是化学方法中的必需反应物——氧化剂在生产、储存、运输、反应的过程中都存在很多的不安全因素,反应的立体选择性也不强,而生物转化则具有底物选择性、立构选择性、化学选择性、对映选择性等一般化学反应中不具备的优点,在精细化工中占有很大的优势。在工业生物催化中有很好的应用前景。 为了研究生物催化的Baeyer-Villiger反应,我们从本实验室保藏菌种中分离筛选出一株能够以环己酮作为唯一碳源的菌株,进行初步研究并对其产物进行GC/MS定性,探讨了pH,装液量,底物浓度,培养时间,温度以及转速等条件对细菌生长的影响,并进一步研究了细菌的底物广谱性。 此菌株经鉴定属于邻单胞菌属Plesiomonas sp.), 根据正交试验,确定了菌的最佳生长条件:底物浓度为1mL/L,底物浓度过高对菌株生长有抑制作用,转速为150 rpm ,温度为30℃ ,pH为7.0; 此菌株转化环己酮的产物通过GC/MS检测含有内酯,表明此菌株能够催化Baeyer-Villiger氧化反应;此菌株还能够以与环己酮有相似结构的环己烷,环戊酮等作为唯一碳源生长,说明此菌株底物利用范围比较广,用途比较广泛。 Baeyer-Villiger oxidation is an important chemical conversion, its products and intermediates can be used to produce a lot of medicine and fine chemicals. Its success is largely due to its versatility: a variety of carbonyl compounds can be oxidized, a large number of functional groups are tolerated, the regiochemistry is highly predictable and so on, but the oxidants that the traditional chemistry way needs have a number of problem in their production, storage, transportation and reaction, Chemistry way has not a high stereochemistry yet. However, biotransformations have many attractive characters, such as substrate-, stereo-, chemo- and enantioselectivity, so it has a great advantage in the fine chemical industry and has a bright prospect in the industrial biological catalysis. In order to study Baeyer-Villiger oxidation, we isolated a strain which can utilize cyclohexanone as sole carbon source and had a primary research on it. Its product was identified by GC/MS. Effects of pH, volume, concentration of cyclohexanone, cultivating time, temperature and rotate speed on the growth of bacteria were discussed, and the other organic substrates were also studied. The strain was identified as Plesiomonas sp.. The result of orthogonal test made it sure that the best growth condition of the strain is: rotate speed 150 rpm, temperature 30℃, pH7.0, concentration of cyclohexanone1ml/L. There is caprolactone in the product of the fermentation with cyclohexanone as substrate by GC/MS,which indicated that the strain can catalyse Baeyer-Villiger oxidation.In addition,the strain can utilize other organic substrates having the similar structure with cyclohexanone such as cyclohexane, cyclopentanone, Swertiamarin as sole carbon source.So the strain can be applied extentively.
Resumo:
垃圾卫生填埋是国内外城市垃圾的主要处置方法。垃圾渗滤液是渗入填埋场垃圾的降水混合垃圾降解过程中产生的物质而形成的混合物,是垃圾填埋场向环境排放的主要污染物。渗滤液由于其所含高浓度有机和无机污染物,且其中很多物质有生物毒性或难生物降解,难于治理。特别是到填埋晚期,渗滤液中高浓度的氨氮更是增加了治理的难度。渗滤液场外硝化-原位反硝化是填埋场氮管理的新途径。本文利用从环境中筛选出优势硝化功能菌对渗滤液中的高浓度氨氮进行生物硝化,经硝化后的渗滤液回灌至以垃圾柱模拟的生物反应器填埋场,在填埋场内实现原位反硝化。 上述目标通过以下两部分来实现: 第一部分:渗滤液场外硝化。首先从污水厂的硝化污泥中富集并筛选出硝化功能菌,在模拟氨氮废水中优化。将驯化的硝化功能菌接种于连续式完全混合反应器(CSTR)进行高氨氮渗滤液硝化研究。在200余天的连续运行中,反应器硝化和有机物去除效果良好。在最大氨氮负荷和有机物负荷分别为0.65 g N l-1 d-1 和3.84 g COD l-1 d-1时,氨氮和COD去除率分别高于99%和57%。实验过程中发现,游离氨(FA)和溶解氧(DO)浓度对反应器中亚硝酸盐的积累影响很大。 第二部分:渗滤液原位反硝化。本文利用一个垃圾填充柱模拟生物反应器填埋场,研究了硝化渗滤液回灌对垃圾降解的影响,和回灌的硝化渗滤液中TON(总氧化态氮)对填埋场生物反应器产甲烷作用的影响。最后利用变性梯度凝胶电泳(DGGE)分析了硝化渗滤液回灌对垃圾填埋场菌群结构的影响。结果表明:回灌的TON被完全还原,反硝化为主要反应,最大TON负荷为28.6 mg N kg-1 TS d-1。当垃圾柱TON负荷大于11.4 mg N kg-1 TS d-1时,出现了产甲烷抑制,抑制作用随TON负荷的增加而加强。在此过程中,反硝化逐渐代替产甲烷作用成为填埋场内垃圾降解的主要反应,且更多产生的是清洁的氮气,而非温室气体甲烷。直到实验结束时,回灌硝化渗滤液的垃圾柱的甲烷产量仅相当于对照的2.5%,并且回灌的硝化渗滤液还加速了填埋场垃圾的降解与稳定。通过DGGE进行菌群结构分析发现,由于TON对填埋场的长期作用,反硝化菌增多而产甲烷菌减少。 Landfill still remains the chief method for MSW management around the world. Leachate is a mixture of rainfall permeating through landfill and organic and inorganic matters generated during decomposition of the wastes in the landfills, characterized as highly complicated and refractory wastewater. Ex-situ nitrification and sequential in-situ denitrification represents a novel approach to nitrogen management at landfills. In the present paper, nitrification was carried out in a continuous stirred tank reactor (CSTR) inoculated with nitrifying bacteria which were isolated from municipal WWTP of Chengdu city. The nitrified leachate from CSTR was recirculated to a lab-scale municipal solid waste (MSW) column where in-situ denitrification took place. The above object was achived through two parts as following: First, ex-situ nitification of leachate. After acclimated in simulated wastewater for 3 month, nitrifying bacteria isolated from WWTP nitrifying sludge were added to the CSTR for nitrification. The results over 200 days showed that the maximum nitrogen loading rate (NLR) and the maximum organic loading rate (OLR) was 0.65 g N l-1 d-1 and 3.84 g COD l-1 d-1, respectively. The ammonia and COD removal was over 99% and 57%, respectively. Moreover, the effects of free ammonia (FA) and dissolved oxygen (DO) on nitrification were investigated. Second, in-situ denitrification was studied in a municipal solid waste (MSW) column. Variation of nitrified leachate and its effects on the decomposition of municipal solid waste (MSW) were studied in a lab-scale MSW column to which nitrified leachate was recirculated. Additionally, DGGE was employed to investigate the microbial community of both MSW columns. The results suggested: complete reduction of total oxidized nitrogen (TON) was obtained with maximum TON load of 28.6 mg N kg-1 TS d-1 and denitrification was the main reaction responsible. Methanogenesis inhibition was observed while TON load was over 11.4 mg N kg-1 TS d-1 and the inhibition was enhanced with the increase of TON load. Denitrification gradually took over methanogenesis to become the main reaction responsible for decomposition of MSW while nitrogen gas, a clean byproduct, was generated instead. Till the end of the experiment, the average weekly methane production in the denitrification column was as low as 2.5% of that of the control, and the rate of decompition and stability of MSW was accelerated by the recirculation of the nitrified leachate.Owing to long term exposure of nitrified leachate to landfill, denitrifying bacteria increased and methanogen decreased.
Resumo:
The reactions of both thiophene and H2S onMo(2)C/Al2O3 catalyst have been studied by in situ FT-IR spectroscopy. CO adsorption was used to probe the surface sites of Mo2C/Al2O3 catalyst under the interaction and reaction of thiophene and H2S. When the fresh Mo2C/Al2O3 catalyst is treated with a thiophene/H-2 mixture above 473 K, hydrogenated species exhibiting IR bands in the regions 2800-3000 cm(-1) are produced on the surface, indicating that thiophene reacts with the fresh carbide catalyst at relatively low temperatures. IR spectra of adsorbed CO on fresh Mo2C/Al2O3 pretreated by thiophene/H-2 at different temperatures clearly reveal the gradual sulfidation of the carbide catalyst at temperatures higher than 473 K, while H2S/H-2 can sulfide the Mo2C/Al2O3 catalyst surface readily at room temperature (RT). The sulfidation of the carbide surface by the reaction with thiophene or H2S maybe the major cause of the deactivation of carbide catalysts in hydrotreating reactions. The surface of the sulfided carbide catalyst can be only partially regenerated by a recarburization using CH4/H-2 at 1033 K. When the catalyst is first oxidized and then recarburized, the carbide surface can be completely reproduced.
Resumo:
The paper studies the direct oxidation of ethanol and CO on PdO/Ce0.75Zr0.25O2 and Ce(0.75)Zr(0.2)5O(2) catalysts. Characterization of catalysts is carried out by temperature-programmed desorption (TPD), temperature-programmed surface reaction (TPSR) techniques to correlate with catalytic properties and the effect of supports on PdO. The simple Ce0.75Zr0.25O2 is in less active for ethanol and CO oxidation. After loaded with PdO, the catalytic activity enhances effectively. Combined the ethanol and CO oxidation activity with CO-TPD and ethanol-TPSR profiles, we can find the more intensive of CO2 desorption peaks, the higher it is for the oxidation of CO and ethanol. Conversion versus yield plot shows the acetaldehyde is the primary product, the secondary products are acetic acid, ethyl acetate and ethylene, and the final product is CO2. A simplified reaction scheme (not surface mechanism) is suggested that ethanol is first oxidized to form intermediate of acetaldehyde, then acetic acid, ethyl acetate and ethylene formed going with the formation of acetaldehyde, acetic acid, ethyl acetate; finally these byproducts are further oxidized to produce CO2. PdO/Ce0.75Zr0.25O2 catalyst has much higher catalytic activity not only for the oxidation of ethanol but also for CO oxidation. Thus the CO poison effect on PdO/Ce0.75Zr0.25O2 catalysts can be decreased and they have the feasibility for application in direct alcohol fuel cell (DAFC) with high efficiency.
Resumo:
C-6-carboxylated chitosan obtained by oxidation of chitosan was selectively modified in order to obtain derivatives similar to bacterial antigens. Selective O-acetylation of 6-carboxyl chitosan afforded a modified polysaccharide with the 2-amino group available for further modifications to create carbonyl groups. A deaminative degradation reaction allowed the formation of oligosaccharides with terminal aldehyde groups. Reductive alkylation with lactose introduced lactityl branches which were oxidized with galactose oxidase to give aldehyde groups in its -galactose residues.