920 resultados para ORGANIC COATINGS
Resumo:
The wavelength dependence of thermal lens signal from organic dyes are studied using dual beam thermal lens technique. It is found that the profile of thermal lens spectrum widely differ from the conventional absorption spectrum in the case of rhodamine B unlike in the case of crystal violet. This is explained on the basis of varying contribution of nonradiative relaxations from the excited vibronic levels.
Resumo:
The present study which is the first of its kind in this region is an attempt to generate adequate information on the relative abundances, the seasonal and spatial variations as well as on the source and fate of organic compounds found associated with the dissolved, particulate and sedimentary compartments of Chalakudy river system. The study aimed at investigating variations, the relative proportion of dissolved, particulate and sedimentary fractions of these materials as well as the pollution extent so as to be able to comment on the present condition of this river-estuarine system. This thesis focuses attention on the role of biogeoorganics in modifying the ecological and environmental condition of the dissolved, particuIate and sediment compartments with their minute variability subjected to various physical, chemical and biogeochemical processes. A scheme of study encompassing all these objectives provides the frame work for the present investigation.
Resumo:
The present study describes the preparation of Vinyl acetate-Butyl acrylate copolymer lattices of varying compositions and solid contents by semicontinuous emulsion polymerization method. This copolymer lattices were used as binder to develop a new surface coating formulation. The properties of this surface coating were improved by using nano TiO2 colloidal sol as a pigment. Antimicrobial activity of surface coatings was improved by the addition of carboxymethyl chitosan as biocide. Uniformly dispersed tyre crumb was used to give a mat finish to the coating. The mechanical properties adhesive properties, thermal properties etc. of the coatings are presented in thesis.
Resumo:
Catalysis is a very important process from an industrial point of view since the production of most industrially important chemicals involves catalysis.Solid acid catalysts are appealing since the nature of acid sites is known and their chemical behavior in acid catalyzed reactions can be rationalized by means of existing theories and models. Mixed oxides crystallizing in spinel structure are of special interest because the spinel lattice imparts extra stability to the catalyst under various reaction conditions so that theses systems have sustained activities for longer periods. The thesis entitled" Catalysis By Ferrites And Cobaltites For The Alkylation And Oxidation Of Organic Compounds " presents the preparation ,characterization ,and activity studies of the prepared spinels were modified by incorporating other ions and by changing the stoichiometry.The prepared spinels exhibiting better catalytic activity towards the studied reactions with good product selectivity.Acid-base properties and cation distribution of the spinels were found to control the catalytic activity.
Resumo:
Department of Applied Chemistry, Cochin University of Science and Technology
Resumo:
The present thesis develops from the point of view of titania sol-gel chemistry and an attempt is made to address the modification of the process for better photoactive titania by selective doping and also demonstration of utilization of the process for the preparation of supported membranes and self cleaning films.A general introduction to nanomaterials, nanocrystalline titania and sol-gel chemistry are presented in the first chapter. A brief and updated literature review on sol-gel titania, with special emphasis on catalytic and photocatalytic properties and anatase to rutile transformation are covered. Based on critical assessment of the reported information the present research problem has been defined.The second chapter describes a new aqueous sol-gel method for the preparation of nanocrystalline titania using titanyl sulphate as precursor. This approach is novel since no earlier work has been reported in the same lines proposed here. The sol-gel process has been followed at each step using particle size, zeta potential measurements on the sol and thermal analysis of the resultant gel. The prepared powders were then characterized using X-ray diffraction, FTIR, BET surface area analysis and transmission electron microscopy.The third chapter presents a detailed discussion on the physico-chemical characterization of the aqueous sol-gel derived doped titania. The effect of dopants such as tantalum, gadolinium and ytterbium on the anatase to rutile phase transformation, surface area as well as their influence on photoactivity is also included. The fourth chapter demonstrates application of the aqueous sol-gel method in developing titania coatings on porous alumina substrates for controlling the poresize for use as membrane elements in ultrafiltration. Thin coatings having ~50 nm thickness and transparency of ~90% developed on glass surface were tested successfully for self cleaning applications.
Resumo:
Catalysis is a technologically important field which determines the quality of life in future. Catalyst research in pharmaceutical industry,fine chemical synthesis and emission control demands supported catalysts in bulk quantities.In the present work it was observed that clay supported catalysts mentioned in various chapters could also be used for the synthesis of similar molecules. The K10Ti catalyst can be used for the synthesis similar substituted imidazole derivatives under solvent free conditions and synthetically important Mannich bases of substrates containing various substitutes.Al-pillared saponite can be used for acetalation of other polyhydroxy compounds like glycerol,mannitol etc.Cu-Pd KSF catalyst has found application in C-C bond forming reactions which can be applied to other reactions and similar methods can be adopted for the synthesis of other catalyst by changing the transition metals. Montmorillonite K10 catalysed synthesis of triarylpyridines can be extended to the synthesis tetrasubstuted pyroles.K10Ti can also be utilized for the synthesis of similar heterocycles.
Resumo:
This thesis entitled “Contribution of size fractions of planktonic algae to primary organic productivity in the coastal waters of cochin,south west coast of india”. Marine ecosystems planktonic algae are the most important primary producers on wliich considerable attention is being given on account of their supreme status in the marine food chain.The study of primary production in the Indian Ocean started With DANA (I928-30),, John Murray t I933-34). Discovery ( I934) and Albatross (I947-48) expeditions which tried to evaluate productivity from nutrients and standing crop of phytoplankton .The bioproductivity of the marine environment is dependent on various primary producers. ranging in size from picoplankton to larger macro phytoplankton. The quantity and quality of various size fractions of planktonic algae at any locality depend mainly on the hydrographic conditions of the area .In the coastal waters of Cochin- south west coast of lndia. Planktonic algal community is composed mainly of the diatoms, the dinoflagellates, the blue-green algae and the silicoflagellates, the former two contributing the major flora and found distributed in the all size fractions. The maximum number of species of diatoms at station 1 and station 2 was found in the pre-monsoon season.. The size groups of planktonic algae greater than 53 um are dominated by filamentous- chain forming and colonial diatoms. The coastal waters of Cochin. planktonic algae less than 53 um in size contribute significantly to primary productivity and the biodiversity of the microflora, indicating the presence of rich fishery resources in the south west coast of india.The study of different size fractions of planktonic algae and their relative contribution to the primary organic production is a useful tool for the estimation of the quantity and quality of fisheries.A deeper investigation on the occurrence of these microalgae and proper identification of their species would be of immense help for the assessment of the specificity and magnitude of fishery resources.
Resumo:
Present thesis has discussed the design and synthesis of polymers suitable for nonlinear optics. Most of the molecules that were studied have shown good nonlinear optical activity. The second order nonlinear optical activity of the polymers was measured experimentally by Kurtz and Perry powder technique. The thesis comprises of eight chapters.The theory of NLO phenomenon and a review about the various nonlinear optical polymers has been discussed in chapter 1. The review has provided a survey of NLO active polymeric materials with a general introduction, which included the principles and the origin of nonlinear optics, and has given emphasis to polymeric materials for nonlinear optics, including guest-host systems, side chain polymers, main chain polymers, crosslinked polymers, chiral polymers etc.Chapter 2 has discussed the stability of the metal incorporated tetrapyrrole molecules, porphyrin, chlorin and bacteriochlorin.Chapter 3 has provided the NLO properties of certain organic molecules by computational tools. The chapter is divided into four parts. The first part has described the nonlinear optical properties of chromophore (D-n-A) and bichromophore (D-n-A-A-n-D) systems, which were separated by methylene spacer, by making use of DPT and semiempirical calculations.Chapter 4: A series of polyurethanes was prepared from cardanol, a renewable resource and a waste of the cashew industry by previously designed bifunctional and multifunctional polymers using quantum theoretical approach.Chapter 5: A series of chiral polyurethanes with main chain bis azo diol groups in the polymer backbone was designed and NLO activity was predicted by ZlNDO/ CV methods.In Chapter 7, polyurethanes were first designed by computational methods and the NLO properties were predicted by correction vector method. The designed bifunctional and multifunctional polyurethanes were synthesized by varying the chiral-achiral diol compositions
Resumo:
This thesis entitled triterpenoids as biomarkers of mangrove organic matter in cochin estuarine system.Mangrove forests, known as rainforests of the sea are one of the most important coastal ecosystems in the world in terms of primary production and coastal protection.Estuaries, the important areas of world’s coastal zones link the carbon cycle of the oceans to the continents.Three mangrove ecosystems and three estuarine stations around Cochin region, southwest coast of India were selected for the present study. The thesis is divided into five chapters. Chapter 1 is the Introduction and it deals with the aim and scope of the present study. Chapter 2 is Materials and Methods. This chapter deals with the nature and general geographical features of the study area. It also contains the details of the sampling and analytical methodology.the present study. Chapter 3 is Geochemistry and it includes the seasonal and spatial variations of the geochemical parameters in the surface sediments.Chapter 4 is Biochemical Composition. It covers the biochemical composition of organic matter in the surface sediments to examine the quality and quantity of organic matter.Chapter 5, Triterpenoid Biomarkers in Sediments, characterize the organic matter in the sediments of the mangrove and estuarine ecosystems under study, to assess the possible sources with the help of triterpenoid biomarkers along with other lipid biomarkers.
Resumo:
Light emitting polymers (LEP) have drawn considerable attention because of their numerous potential applications in the field of optoelectronic devices. Till date, a large number of organic molecules and polymers have been designed and devices fabricated based on these materials. Optoelectronic devices like polymer light emitting diodes (PLED) have attracted wide-spread research attention owing to their superior properties like flexibility, lower operational power, colour tunability and possibility of obtaining large area coatings. PLEDs can be utilized for the fabrication of flat panel displays and as replacements for incandescent lamps. The internal efficiency of the LEDs mainly depends on the electroluminescent efficiency of the emissive polymer such as quantum efficiency, luminance-voltage profile of LED and the balanced injection of electrons and holes. Poly (p-phenylenevinylene) (PPV) and regio-regular polythiophenes are interesting electro-active polymers which exhibit good electrical conductivity, electroluminescent activity and high film-forming properties. A combination of Red, Green and Blue emitting polymers is necessary for the generation of white light which can replace the high energy consuming incandescent lamps. Most of these polymers show very low solubility, stability and poor mechanical properties. Many of these light emitting polymers are based on conjugated extended chains of alternating phenyl and vinyl units. The intra-chain or inter-chain interactions within these polymer chains can change the emitted colour. Therefore an effective way of synthesizing polymers with reduced π-stacking, high solubility, high thermal stability and high light-emitting efficiency is still a challenge for chemists. New copolymers have to be effectively designed so as to solve these issues. Hence, in the present work, the suitability of a few novel copolymers with very high thermal stability, excellent solubility, intense light emission (blue, cyan and green) and high glass transition temperatures have been investigated to be used as emissive layers for polymer light emitting diodes.
Resumo:
Vibrational overtone spectroscopy of X-H (X=C,N,O) containing molecules is an area of recent interest. The spectroscopic studies of higher vibrational levels yield valuable informations, regarding,the molecular structure, intra- and inter-molecular interactions, radiationless transitions, intra-molecular vibrational relaxations, multiphoton excitations and chemical reactivities, which cannot be z obtained by other spectroscopic methods. This thesis presents the results of experimental investigations on the overtone spectra of some organic compounds in the liquid phase for the characterization of CH bonds. The spectra in the fifth overtone region (1fiV=6) are recorded using a dual beam thermal lens setup and the lower overtones (.AV=2-5) are recorded spectrophotometrically.The thesis is presented in six chapters.
Resumo:
The thesis presents the results of the investigations on the crystallisation ‘behaviour, detect structure end electrical properties of certain organic crystals---phthslic snhydride end potsssiun scid phthalate Hollow crystals of phthalic snhydride were grown from vapour. the norpholog of these hollow crystals were studied in detail and s. mechanism for their growth has been proposed. A closed crystal—vapour system was used to study the basal plane growth of the whiskers and the sequential growth, observed, confirmed the mechanism suggested for hollow crystals. The dendritic crystals of phthslic enhydride were grown, both iron the melt and solution. The observed morphologies of these dendrites ere described. Bpherulites of phthalic anhydride have been grown by the artificial initiation of nucleation, from melt and solution. The variation of the substructure oi’ these spherulites with the growth tenperature wee investigated. The spherulitic filll having ribbon substructure were etched to reveal dislocations. A mechanism for the formation of the observed etch pattern has been suggested. the slip occurring in these ribbons were studied and the results are presented
Resumo:
Near-infrared spectroscopy can be a workhorse technique for materials analysis in industries such as agriculture, pharmaceuticals, chemicals and polymers. A near-infrared spectrum represents combination bands and overtone bands that are harmonics of absorption frequencies in the mid-infrared. Near-infrared absorption includes a combination-band region immediately adjacent to the mid-infrared and three overtone regions. All four near-infrared regions contain "echoes" of the fundamental mid-infrared absorptions. For example, vibrations in the mid-infrared due to the C-H stretches will produce four distinct bands in each of the overtone and combination regions. As the bands become more removed from the fundamental frequencies they become more widely separated from their neighbors, more broadened and are dramatically reduced in intensity. Because near-infrared bands are much less intense, more of the sample can be used to produce a spectra and with near-infrared, sample preparation activities are greatly reduced or eliminated so more of the sample can be utilized. In addition, long path lengths and the ability to sample through glass in the near-infrared allows samples to be measured in common media such as culture tubes, cuvettes and reaction bottles. This is unlike mid-infrared where very small amounts of a sample produce a strong spectrum; thus sample preparation techniques must be employed to limit the amount of the sample that interacts with the beam. In the present work we describe the successful the fabrication and calibration of a linear high resolution linear spectrometer using tunable diode laser and a 36 m path length cell and meuurement of a highly resolved structure of OH group in methanol in the transition region A v =3. We then analyse the NIR spectrum of certain aromatic molecules and study the substituent effects using local mode theory