999 resultados para Nuclear fuel rods.
Resumo:
The monthly fuel tax report from Iowa Department of Transportation to the Iowa Department of Revenue and Finance.
Resumo:
The monthly fuel tax report from Iowa Department of Transportation to the Iowa Department of Revenue and Finance.
Resumo:
The monthly fuel tax report from Iowa Department of Transportation to the Iowa Department of Revenue and Finance.
Resumo:
The monthly fuel tax report from Iowa Department of Transportation to the Iowa Department of Revenue and Finance.
Resumo:
The monthly fuel tax report from Iowa Department of Transportation to the Iowa Department of Revenue and Finance.
Resumo:
The monthly fuel tax report from Iowa Department of Transportation to the Iowa Department of Revenue and Finance.
Resumo:
The monthly fuel tax report from Iowa Department of Transportation to the Iowa Department of Revenue and Finance.
Resumo:
The monthly fuel tax report from Iowa Department of Transportation to the Iowa Department of Revenue and Finance.
Resumo:
The monthly fuel tax report from Iowa Department of Transportation to the Iowa Department of Revenue and Finance.
Resumo:
The monthly fuel tax report from Iowa Department of Transportation to the Iowa Department of Revenue and Finance.
Resumo:
The monthly fuel tax report from Iowa Department of Transportation to the Iowa Department of Revenue and Finance.
Resumo:
The distribution of three nuclear scaffold proteins (of which one is a component of a particular class of nuclear bodies) has been studied in intact K562 human erythroleukemia cells, isolated nuclei, and nuclear scaffolds. Nuclear scaffolds were obtained by extraction with the ionic detergent lithium diidosalicylate (LIS), using nuclei prepared in the absence of divalent cations (metal-depleted nuclei) and stabilized either by a brief heat exposure (20 min at 37C or 42C) or by Cu++ ions at 0C. Proteins were visualized by in situ immunocytochemistry and confocal microscopy. Only a 160-kD nuclear scaffold protein was unaffected by all the stabilization procedures performed on isolated nuclei. However, LIS extraction and scaffold preparation procedures markedly modified the distribution of the polypeptide seen in intact cells, unless stabilization had been performed by Cu++. In isolated nuclei, only Cu++ treatment preserved the original distribution of the two other antigens (M(r), 125 and 126 kD), whereas in heat-stabilized nuclei we detected dramatic changes. In nuclear scaffolds reacted with antibodies to 125 and 126-kD proteins, the fluorescent pattern was always disarranged regardless of the stabilization procedure. These results, obtained with nuclei prepared in the absence of Mg+2 ions, indicate that heat treatment per se can induce changes in the distribution of nuclear proteins, at variance with previous suggestions. Nevertheless, each of the proteins we have studied behaves in a different way, possibly because of its specific association with the nuclear scaffold.
Resumo:
By means of confocal laser scanning microscopy and indirect fluorescence experiments we have examined the behavior of heat-shock protein 70 (HSP70) within the nucleus as well as of a nuclear matrix protein (M(r) = 125 kDa) during a prolonged heat-shock response (up to 24 h at 42 degrees C) in HeLa cells. In control cells HSP70 was mainly located in the cytoplasm. The protein translocated within the nucleus upon cell exposure to hyperthermia. The fluorescent pattern revealed by monoclonal antibody to HSP70 exhibited several changes during the 24-h-long incubation. The nuclear matrix protein showed changes in its location that were evident as early as 1 h after initiation of heat shock. After 7 h of treatment, the protein regained its original distribution. However, in the late stages of the hyperthermic treatment (17-24 h) the fluorescent pattern due to 125-kDa protein changed again and its original distribution was never observed again. These results show that HSP70 changes its localization within the nucleus conceivably because it is involved in solubilizing aggregated polypeptides present in different nuclear regions. Our data also strengthen the contention that proteins of the insoluble nucleoskeleton are involved in nuclear structure changes that occur during heat-shock response.
Resumo:
The Seventy-ninth General Assembly of the State of Iowa, 2001 Regular Session, passed Senate File 465 which was signed by the Governor on April 19, 2001. This act created the biodiesel fuel revolving fund to be used to purchase biodiesel fued for use in the Iowa Department of Transportation (DOT vehicles. This report details activity of the fund for fiscal year 2009.
Resumo:
House File 2754 requires by February 1 of each year the Iowa Department of Transportation shall deliver a report to the governor and legislative services agency regarding flexible fuel vehicles registered in Iowa.